最小斯坦纳树打印方案

最小斯坦纳树打印方案

阅读本文需要完全掌握上一篇文章《动态规划求解最小斯坦纳树》

我们以求解“最小边权和”斯坦纳树为例进行演示。

【前情回顾】

动态规划求解最小斯坦纳树的过程,主要依靠两个步骤:合并子树强行连通

除了最初始的 d p [ 1 < < ( i − 1 ) ] [ t e r m i n a l [ i ] ] dp[1<<(i-1)][terminal[i]] dp[1<<(i1)][terminal[i]]之外,其余的所有 d p dp dp 状态都是靠合并子树 + 强行连通产生的。

如何去求一个 d p [ S ] [ t e r m i n a l [ i ] ] dp[S][terminal[i]] dp[S][terminal[i]] 所表示的具体的最小斯坦纳树?只要遵循下面步骤:

1.求出 d p [ S ] [ t e r m i n a l [ i ] ] dp[S][terminal[i]] dp[S][terminal[i]] 是被谁转移的? 这个和 D i j k s t r a Dijkstra Dijkstra最短路时记录前驱结点相同。对于每个结点 i , i ∈ V i,i\in V i,iV,我们需要在强行连通操作中记录 i i i 是被谁转移的?将答案存在 f a [ S ] [ i ] fa[S][i] fa[S][i] 中。

if (dp[s][v] > dp[s][u] + w(u,v)) {
     fa[s][v] = u;
     q.push({dp[s][v],v});
}

我们一直回溯下去(假设 v v v 是由 u u u 转移而来, u u u 是由 t t t 转移而来, ⋯ \cdots ,最终一定存在一个点 x x x d p [ S ] [ x ] dp[S][x] dp[S][x] 一定是由其自身的子树合并而来,即 f a [ S ] [ x ] = x fa[S][x]=x fa[S][x]=x。)当回溯到由自身的子树合并而来的值的时候,我们终止循环。

int v = terminal[1];
while (fa[S][v] != v) { 
     v = fa[S][v];
     ans.push_back(v); //ans 是最终的最小斯坦纳树点集
}

接下来怎么操作?现在 v v v 已经是由自身的子树合并而来的,所以接下来我们要在合并子树操作中记录前驱值(子树所包含的集合)

记录 d p [ S ] [ v ] dp[S][v] dp[S][v] 合并了自身的哪两个子树?

m e r g e [ S ] [ v ] [ 0 ] = S ′ , m e r g e [ S ] [ v ] [ 1 ] = S − S ′ merge[S][v][0]=S',merge[S][v][1]=S-S' merge[S][v][0]=S,merge[S][v][1]=SS(用两个数组记录 d p [ S ] [ v ] dp[S][v] dp[S][v] 是合并了哪两个子树 d p [ S ′ ] [ v ] , d p [ S − S ′ ] [ v ] dp[S'][v],dp[S-S'][v] dp[S][v],dp[SS][v])。为了方便起见通常令 m e r g e [ S ] [ v ] [ 0 ] merge[S][v][0] merge[S][v][0] 存较小的集合, m e r g e [ S ] [ v ] [ 1 ] merge[S][v][1] merge[S][v][1] 存较大的集合。

for (int t = s; t != 0; t = (t - 1) & s) {
     for (int i = 0; i < N; i++) {
          if(dp[s][i] > dp[t][i] + dp[s ^ t][i]) {
               dp[s][i] = dp[t][i] + dp[s ^ t][i];
               merge[s][i][0] = min(t, s ^ t);
               merge[s][i][1] = max(t, s ^ t);
          }
     }
}

接下来,只要求解 d p [ S ′ ] [ v ] dp[S'][v] dp[S][v] d p [ S − S ′ ] [ v ] dp[S-S'][v] dp[SS][v] 的前驱结点即可。不难发现这是一个递归的过程,而递归的终点就是 我们递归到了初始化时的值。

//以任意的S中的一个点为起点。
int v = terminal[1];
map<int,int> ans; //用集合去重
work(S,v);
----------------------------------------
//写一个递归函数
void work(int S,int v) {
     while (fa[S][v] != v) {
          ans[v] = 1;
          v = fa[S][v];
     }
     int cnt = 0;
     for (int i = 0; i < k; i++) {
         if (S & (1 << i)) {
             cnt++;
         }
     }
     if (cnt == 1) return; //强行连通操作完了之后,如果|S|是1,说明已经到了初始值,直接退出循环
     int mask1 = merge[S][v][0], mask2 = merge[S][v][1];
     work(mask1, v); work(mask2,v);
}
-----------------------------------------
//最终答案就是map中的点。
【模版】
#include <bits/stdc++.h>
using namespace std;
//#pragma GCC optimize(2)
#define int long long
#define endl '\n'
#define PII pair<int,int>
#define INF 1e18
const int K = 11;
const int N = 2000;
vector<PII> g[N]; //邻接表存图
int n, m, k;
map<int,int> ans;
int terminal[K], fa[1 << K][N], Merge[1 << K][N][2];
int bnt = 0;
void work(int S,int v) {
     bnt++;
     if(bnt > 1000) return;
     
     while (fa[S][v] != v) {
          ans[v] = 1; 
          v = fa[S][v];
          ans[v] = 1; 
     }
     
     //强行连通操作完了之后,如果|S|是1,说明已经到了初始值,直接退出循环
     int cnt = 0;
     for (int i = 0; i < k; i++) if (S & (1 << i)) cnt++;
     if (cnt == 1) return;

     int mask1 = Merge[S][v][0], mask2 = Merge[S][v][1];
     work(mask1, v); work(mask2,v);
}


void add (int u, int v, int w) { g[u].push_back({v,w}); }

void printSteinerTree(){
    work((1 << k) - 1, terminal[1]);
    for (auto i : ans) cout << i.first << ' ';
    cout << endl;
}

void slove () {
    cin >> n >> k >> m;

    for (int i = 1; i <= m; i++) {
        int u, v, w;
        cin >> u >> v >> w;
        add (u, v, w), add(v, u, w);
    }

    vector<vector<int>> dp(1 << k, vector<int>(n + 1, INF));
    for (int i = 1; i <= k; i++) {
        cin >> terminal[i];
        dp[1 << (i - 1)][terminal[i]] = 0;
    }

    for (int S = 1; S < (1 << k); S++) {
        for (int t = S; t; t = (t - 1) & S ) {
            for (int u = 1; u <= n; u++) {
               if(dp[S][u] > dp[t][u] + dp[S ^ t][u]) {
                       dp[S][u] = dp[t][u] + dp[S ^ t][u];
                       Merge[S][u][0] = min(t, S ^ t);
                       Merge[S][u][1] = max(t, S ^ t);
                }
            }
        }

        priority_queue<PII, vector<PII>, greater<PII>> q;

        for (int i = 1; i <= n; i++) {
            fa[S][i] = i; // 初始化 i是由自身转移而来的
            if (dp[S][i] != INF) q.push({dp[S][i], i});
        }

        while (q.size()) {
            auto [d,u] = q.top();
            q.pop();
            if (d != dp[S][u]) continue;
            for (auto [v,w] : g[u]) {
                if (dp[S][v] > dp[S][u] + w) {
                    dp[S][v] = dp[S][u] + w;
                    fa[S][v] = u;
                    q.push({dp[S][v], v});
                }
            }
        }
    }
    
    printSteinerTree();
    cout << dp[(1 << k) - 1][terminal[1]] << endl;

}

signed main () {
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    slove();
}
### 回答1: Python实现最小斯坦纳树的代码可以使用Prim算法来解决。具体实现如下: ```python import sys # 为了方便表示图的邻接矩阵,使用无穷大代表不可达 inf = sys.maxsize def prim(graph): num_vertices = len(graph) key = [inf] * num_vertices # 记录顶点到最小生成树的最小权值边 parent = [None] * num_vertices # 记录最小生成树中顶点的父节点 visited = [False] * num_vertices # 记录顶点是否已访问 # 将第一个顶点设为起始顶点 key[0] = 0 for _ in range(num_vertices): # 找到未访问的顶点中键值最小的顶点 min_key = inf min_vertex = None for v in range(num_vertices): if not visited[v] and key[v] < min_key: min_key = key[v] min_vertex = v # 将找到的顶点标记为已访问 visited[min_vertex] = True # 更新顶点的最小权值边和父节点 for v in range(num_vertices): if not visited[v] and graph[min_vertex][v] < key[v]: key[v] = graph[min_vertex][v] parent[v] = min_vertex return parent def min_steiner_tree(graph, terminals): num_terminals = len(terminals) # 构建终端间的最短路径图 shortest_paths = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): shortest_paths[i][j] = dijkstra(graph, terminals[i], terminals[j]) # 在最短路径图上生成最小斯坦纳树 steiner_tree = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): if i == j: steiner_tree[i][j] = 0 else: for k in range(num_terminals): steiner_tree[i][j] = min(steiner_tree[i][j], shortest_paths[i][k] + shortest_paths[k][j]) # 使用Prim算法生成最小生成树 parent = prim(steiner_tree) return parent # 测试代码 graph = [[0, 7, 9, inf, inf, 14], [7, 0, 10, 15, inf, inf], [9, 10, 0, 11, inf, 2], [inf, 15, 11, 0, 6, inf], [inf, inf, inf, 6, 0, 9], [14, inf, 2, inf, 9, 0]] terminals = [0, 2, 4] parent = min_steiner_tree(graph, terminals) print(parent) ``` 此代码是使用Prim算法在最短路径图上生成最小斯坦纳树。输入的图是一个邻接矩阵,其中inf表示顶点之间不可达。terminals是终端节点的列表。输出是一个列表,表示每个顶点在生成的最小斯坦纳树中的父节点。 ### 回答2: Python实现最小斯坦纳树的代码可以使用图的最小生成树算法和动态规划的思想。 首先,我们可以使用Prim算法或Kruskal算法找到图的最小生成树,即连接所有顶点的最小权重的子图。 接下来,对于每一条边,我们通过遍历所有顶点集合的子集来找到最小斯坦纳树。子集的大小从1开始递增,直到包含所有顶点为止。 对于每个子集,我们通过动态规划的方法来找到连接子集中所有顶点的最小权重的边。 具体的实现步骤如下: 1. 使用Prim算法或Kruskal算法找到图的最小生成树,并保存最小生成树的边集合。 2. 对于每条边e in 最小生成树的边集合: 2.1 对于每个顶点集合V'(从1个元素开始递增到总顶点数): 2.1.1 如果V'包含边e的两个顶点,则忽略该顶点集合。 2.1.2 否则,遍历V'的所有子集V'': 2.1.2.1 如果V''中不包含边e的两个顶点,则忽略该子集。 2.1.2.2 否则,计算通过V''中的顶点连接边e的权重和,并更新最小权重值和对应的边。 3. 最后得到的最小权重值和对应的边即为最小斯坦纳树的结果。 以下是一个简单的Python代码示例: ```python import math def minimum_steiner_tree(graph): n = len(graph) inf = float('inf') dp = [[inf] * n for _ in range(1 << n)] for v in range(n): dp[1 << v][v] = 0 for S in range(1 << n): for v in range(n): for u in range(n): dp[S | (1 << u)][u] = min(dp[S | (1 << u)][u], dp[S][v] + graph[v][u]) return min(dp[-1]) # 测试代码 graph = [[0, 2, 3, math.inf], [2, 0, 1, 3], [3, 1, 0, 2], [math.inf, 3, 2, 0]] result = minimum_steiner_tree(graph) print("最小斯坦纳树的权重为:", result) ``` 权重矩阵graph表示的是无向图的邻接矩阵,math.inf表示无穷大,表示两个顶点之间没有边。代码中的结果为最小斯坦纳树的权重。 ### 回答3: Python最小斯坦纳树的代码可以通过使用Dijkstra算法和回溯法来实现。以下是一个可能的实现: ```python import sys def dijkstra(graph, src): n = len(graph) dist = [sys.maxsize] * n dist[src] = 0 visited = [False] * n for _ in range(n): u = min_distance(dist, visited) visited[u] = True for v in range(n): if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]: dist[v] = dist[u] + graph[u][v] return dist def min_distance(dist, visited): min_dist = sys.maxsize min_index = -1 for v in range(len(dist)): if not visited[v] and dist[v] < min_dist: min_dist = dist[v] min_index = v return min_index def tsp_solver(graph, start): n = len(graph) tsp_path = None tsp_cost = sys.maxsize def tsp_recursion(curr_node, visited, current_path, current_cost): nonlocal tsp_path, tsp_cost if len(visited) == n: if graph[curr_node][start] > 0: current_cost += graph[curr_node][start] current_path.append(start) if current_cost < tsp_cost: tsp_cost = current_cost tsp_path = current_path.copy() current_path.pop() current_cost -= graph[curr_node][start] return for next_node in range(n): if next_node not in visited: new_path = current_path.copy() new_path.append(next_node) tsp_recursion(next_node, visited + [next_node], new_path, current_cost + graph[curr_node][next_node]) tsp_recursion(start, [start], [start], 0) return tsp_path, tsp_cost def min_steiner_tree(graph, terminals): n = len(graph) t = len(terminals) dp = [[sys.maxsize] * t for _ in range(1 << t)] # 动态规划表格 path = [[None] * t for _ in range(1 << t)] # 记录路径 for i in range(t): dist = dijkstra(graph, terminals[i]) for j in range(t): dp[1 << i][j] = dist[terminals[j]] for i in range(1 << t): for j in range(t): if dp[i][j] == sys.maxsize: continue for k in range(t): if (i >> k) & 1 == 0 and dp[i][j] + dp[1 << k | i][k] < dp[1 << k | i][k]: dp[1 << k | i][k] = dp[i][j] + dp[1 << k | i][k] path[1 << k | i][k] = j min_cost = sys.maxsize min_path = None for i in range(t): if dp[(1 << t) - 1][i] < min_cost: min_cost = dp[(1 << t) - 1][i] min_path = [i] while len(min_path) < t: last_node = min_path[-1] min_path.append(path[(1 << t) - 1][last_node]) min_path = [terminals[i] for i in min_path] tsp_path, tsp_cost = tsp_solver(graph, terminals[0]) min_cost += tsp_cost min_path += tsp_path[1:] return min_path, min_cost # 测试例子 graph = [ [0, 2, 3, 0, 0], [2, 0, 0, 4, 0], [3, 0, 0, 1, 3], [0, 4, 1, 0, 2], [0, 0, 3, 2, 0] ] terminals = [1, 2, 3] path, cost = min_steiner_tree(graph, terminals) print("最小斯坦纳树路径:", path) print("最小斯坦纳树总成本:", cost) ``` 这段代码通过调用`min_steiner_tree`函数来计算给定图和终端点集合的最小斯坦纳树的路径和成本。`graph`代表图的邻接矩阵,`terminals`代表终端点的列表。最后将得到的最小斯坦纳树路径和成本打印出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

louisdlee.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值