机器学习入门
文章平均质量分 87
louishao
这个作者很懒,什么都没留下…
展开
-
Logistic回归编程实战
上一节学习了Logistic回归,这一节就针对该算法进行编程实战,所使用的是python2.7。原创 2017-02-04 20:11:27 · 997 阅读 · 3 评论 -
机器学习入门——初步认知人工神经网络
本章将讲解神经网络。初步认识神经网络,理解引入神经网络的意义,神经网络的计算,最后还给出简单的实例,更加形象地说明神经网络的作用。原创 2017-02-07 19:28:53 · 7495 阅读 · 4 评论 -
机器学习入门——线性回归
Andrew Ng机器学习——线性回归的学习笔记,自己的一些整理。原创 2017-01-17 11:15:58 · 1238 阅读 · 0 评论 -
机器学习入门——线性代数简单回顾
本节课程回顾了一些简单但常用的线性代数知识,并对每个知识点列举具体例子,力求深入浅出。同时,最后还进行了编程实现,更利于实战应用。原创 2017-01-17 17:40:11 · 7281 阅读 · 2 评论 -
机器学习入门——神经网络深入
我们讲解了神经网络的初步认知,主要是理解了引入神经网络的意义及其前向传播过程。本章我们将进一步理解神经网络,理解它是如何自动优化参数,使其能完成分类、预测等功能的。最后,我们使用tensorflow框架快速构建BP神经网络,进行编程实战。原创 2017-02-09 23:49:24 · 700 阅读 · 0 评论 -
机器学习入门——多变量线性回归
本节将使用线性代数引入更加通用,更贴近实际应用的线性回归算法——多变量线性回归。同时,会详细讲解梯度下降法的设计和使用一种新的方法求解θ。最后,编程实现及两者的对比。原创 2017-01-22 18:10:52 · 3415 阅读 · 0 评论 -
机器学习入门——Logistic回归
机器学习中存在很多分类问题,同时线性回归是难以实现的。本文在简单的线性回归基础上,进行拓展,详细讲解Logistic回归,实现二分类,甚至多元分类。原创 2017-02-01 22:20:26 · 25067 阅读 · 3 评论 -
机器学习入门——应用机器学习的建议
文章给出了应用机器学习算法建模的一些建议,主要是根据各方面,比如:正则化参数λ,训练集规模等,直观反映模型存在的问题,然后提出高效的应对措施。原创 2017-03-10 20:41:42 · 857 阅读 · 0 评论