摘要:本文深入研究了基于YOLOv8/v7/v6/v5的火焰检测,核心采用YOLOv8并整合了YOLOv7、YOLOv6、YOLOv5算法,进行性能指标对比;详述了国内外研究现状、数据集处理、算法原理、模型构建与训练代码,及基于Streamlit的交互式Web应用界面设计。在Web网页中可以支持图像、视频和实时摄像头进行火焰检测,可上传不同训练模型(YOLOv8/v7/v6/v5)进行推理预测,界面可方便修改。本文附带了完整的网页设计、深度学习模型代码和训练数据集的下载链接。
文章目录
网页版-基于深度学习的火焰检测系统(YOLOv8/v7/v6/v5+实现代码+训练数据集)
1. 网页功能与效果
(1)开启摄像头实时检测:本系统允许用户通过网页直接开启摄像头,实现对实时视频流中火焰的检测。系统将自动识别并分析画面中的火焰,并将检测结果实时显示在用户界面上,为用户提供即时的反馈。
(2)选择图片检测:用户可以上传本地的图片文件到系统中进行火焰检测。系统会分析上传的图片,识别出图片中的火焰,并在界面上展示带有火焰标签和置信度的检测结果,让用户能够清晰地了解到每个火焰状态。
(3)选择视频文件检测:系统支持用户上传视频文件进行火焰检测。上传的视频将被系统逐帧分析,以识别和标记视频中每一帧的火焰。用户可以观看带有火焰检测标记的视频,了解视频中火焰的变化。
(4)选择不同训练好的模型文件:系统集成了多个版本的YOLO模型(如YOLOv8/v7/v6/v5),用户可以根据自己的需求选择不同的模型进行火焰检测。这一功能使得用户能够灵活地比较不同模型的表现,以选择最适合当前任务的模型。
在我们的系统中,实时摄像头火焰检测功能允许用户直接通过网页开启摄像头进行实时监测。该功能能够即时分析并准确标识出画面中的火焰位置,同时提供了灵活的视图选项,允许检测画面和原始画面根据用户的需求同时或单独显示。此外,本系统还支持图片和视频文件检测,用户可以轻松上传本地的图片或视频文件,系统将自动进行火焰检测,并在界面上清晰地标出检测结果。
为了适应不同场景的需求,我们提供了模型选择与应用功能。用户可以通过一个简易的下拉菜单,选择不同训练好的模型文件(包括YOLOv8/v7/v6/v5等)进行检测,以找到最佳的检测效率和准确性平衡。针对需要特定目标检测的用户,我们设计了目标标记与结果显示功能,通过这一功能,用户可以单独标记并显示特定目标的检测结果,结果将直观地在页面的表格中展示。
为了进一步优化检测效果,系统允许用户通过参数动态调整功能,灵活地调整检测算法的置信度阈值和IOU(Intersection over Union)阈值。这一设计帮助用户根据实际情况找到最适合的检测参数设置。最后,考虑到用户可能需要将检测结果进行进一步的分析或报告,我们提供了方便的结果导出功能。用户不仅可以将检测的表格结果导出到CSV文件,还可以将标记后的图片、视频及摄像头画面的检测结果导出为AVI图像文件。
通过上述功能的设计和实现,我们的系统不仅提升了火焰检测的准确性和实用性,还大幅度提高了用户交互的便利性和灵活性。
2. 绪论
2.1 研究背景及意义
火灾一直是威胁人类生命和财产安全的主要灾害之一。据统计,每年因火灾造成的经济损失和人员伤亡数字惊人。随着科技的进步,火焰检测技术的研究和应用变得尤为重要。近年来,随着人工智能和深度学习的快速发展,基于这些技术的火焰检测方法越来越受到研究者的关注。特别是基于YOLO(You Only Look Once)系列算法的火焰检测,在实时性和准确度方面展现出了显著的优势。
火焰检测的研究背景和意义不仅体现在对人员安全的保护上,还关系到国家财产安全和社会稳定。火灾的突发性和破坏力要求检测系统不仅要具备高度的灵敏度,还要能够在第一时间内做出反应,以最大限度地减少损失。这就需要火焰检测技术能够在复杂的环境中准确识别火焰,包括在不同光照、不同背景以及不同火焰大小的情况下1。
传统的火焰检测方法主要基于烟雾探测、温度监测等物理方式,这些方法往往存在反应慢、易受环境影响和误报率高等缺点。随着计算机视觉技术的发展,基于图像处理的火焰检测方法开始被研究和应用。这类方法通过分析视频或图片中的火焰特征进行检测,相比于传统方法,能够提供更快的响应速度和更高的准确性。但是,早期的基于图像处理的方法在特征提取和分类器设计上还不够成熟,容易受到环境因素的干扰2。
火焰检测技术的研究和应用对于保护人民生命财产安全、维护社会稳定具有重要意义。基于YOLO算法的火焰检测系统,以其出色的实时性和准确度,成为了当前研究的热点。随着技术的不断进步和创新,未来的火焰检测系统将更加智能、高效,为火灾预防和控制提供更有力的支持。
2.2 国内外研究现状
YOLO系列作为实时目标检测领域的佼佼者,其不同版本在火焰检测任务上的应用效果备受关注。YOLOv3以其出色的速度和准确性成为了许多研究的基础。随后,YOLOv4在保持高速检测的同时,通过引入更先进的特征提取器和注意力机制,进一步提高了检测的准确性。YOLOv5作为非官方版本,以其轻量化和易于部署的特点,在小型或资源受限的设备上展现了良好的性能。最新的YOLOv8模型在结构上进行了大幅优化,不仅提升了检测速度,还增强了模型对小目标的检测能力,对于火焰这类小目标检测任务尤为重要。
除了YOLO系列外,其他深度学习算法也在火焰检测方面展现出潜力。例如,基于卷积神经网络(CNN)的算法能够自动学习和提取火焰图像的特征,避免了复杂的特征工程,这在一定程度上提高了检测的准确率和鲁棒性3。此外,结合长短时记忆网络(LSTM)的方法能够有效处理视频序列中的火焰检测任务,利用时间信息进一步提升检测的性能4。
Faster R-CNN和SSD也在火焰检测领域有所应用。Faster R-CNN以其高精度而著称,通过引入区域建议网络(RPN),大大加快了候选区域的生成速度,提高了检测效率。SSD算法则通过直接预测图像中不同尺度的目标框和类别概率,实现了与YOLO相当的速度和更好的小目标检测性能。这些算法的不同特点和应用场景,为火焰检测提供了多样化的技术选择。
数据集作为训练深度学习模型的基础,其质量直接影响到最终检测的性能。传统火焰检测研究多依赖于公开的少量或自行采集的数据集,这些数据集往往规模较小,多样性和代表性不足。近年来,随着研究的深入,一些大规模且多样化的火焰数据集被构建,如FireNet、FLAME等,这些数据集不仅包含了不同类型、不同光照条件下的火焰图像,还提供了丰富的注释信息,大大促进了火焰检测技术的发展。
近期的研究还包括了算法的集成和优化,旨在通过结合多个模型的优点来克服单一模型的局限性。一些研究通过融合不同的深度学习模型,实现了更高的检测准确率和更好的泛化能力5。同时,对于训练数据的处理和增强也成为提升火焰检测性能的关键,包括使用数据增强技术和生成对抗网络(GAN)生成更多多样化的训练样本。
火焰检测面临的技术挑战主要包括:1) 在复杂背景下的准确性,如烟雾、灰尘等环境因素可能干扰火焰的识别;2) 对小火焰和远距离火焰的敏感性,这要求算法能够在保持高速度的同时,还能准确识别出小尺寸目标;3) 实时性和资源消耗之间的平衡,尤其是在资源受限的设备上实现高效的火焰检测。解决这些挑战需要更加深入的算法优化和创新。
未来火焰检测的研究趋势可能集中在以下几个方面:1) 算法的轻量化和优化,以适应边缘计算设备的需求,实现更广泛的应用场景部署;2) 利用迁移学习和少样本学习等技术,提高模型在新场景下的适应性和泛化能力;3) 引入更多类型的数据,如红外图像和三维点云数据,以增强模型对火焰的识别能力;4) 开发更为智能的系统,不仅能检测火焰,还能预测火势蔓延趋势和提供有效的灭火建议。
2.3 要解决的问题及其方案
2.3.1 要解决的问题
在开发基于YOLOv8/v7/v6/v5的火焰检测系统中,我们面对的主要挑战和相应的特有需求涉及到模型的准确性、速度、环境适应性、用户交互界面的设计,以及数据处理能力等方面。下面详细阐述这些问题及其对本系统的具体意义。
-
火焰检测的准确性和速度
火焰的动态性质和多样性表现形式对检测算法提出了高要求。火焰可能因为燃烧材料、背景环境以及光照条件的不同而表现出不同的颜色、形状和大小。此外,火焰在视频中的快速移动和变化,要求算法不仅要准确还要快速响应,以实现实时监控和预警。因此,开发能够快速并准确识别火焰的深度学习模型是本项目的核心。 -
环境适应性和模型泛化能力
由于火灾可能发生在各种环境条件下,从密闭空间到开放森林,各种变化的光照条件、复杂的背景以及天气变化等因素都可能影响检测准确性。系统需要具备优秀的环境适应性和模型泛化能力,确保在多变的环境条件下都能准确检测火焰。 -
用户交互界面的直观性和功能性
为了让用户能够有效利用火焰检测系统,用户界面的设计必须直观易懂,功能布局合理。系统应提供包括实时监控、历史记录查询、模型切换等功能,以满足不同用户的需求。同时,考虑到操作的便捷性,界面设计应简洁,易于新用户快速上手。 -
数据处理能力和存储效率
考虑到火焰检测会处理大量的实时视频流数据,系统必须具备高效的数据处理能力和存储机制。这不仅关系到检测的实时性,还影响到数据的长期管理、查询效率以及安全性和隐私保护。 -
系统的可扩展性和维护性
随着技术进步和用户需求的变化,系统可能需要支持更多的功能或集成新的技术以提高性能。因此,系统设计应具备良好的可扩展性和维护性,允许开发者无缝添加新的模型或更新现有功能,确保系统能够适应未来的发展需求。
2.3.2 解决方案
针对本系统所面临的挑战,我们制定了一系列解决方案,以确保基于YOLOv8/v7/v6/v5的火焰检测系统既准确又实用。以下是我们拟采取的关键方法:
- 深度学习模型的选择和优化
- 模型架构:选择YOLO系列的最新版本作为我们的核心检测模型。YOLOv8作为主要模型,以其在速度和准确性之间的优异平衡为基础,针对火焰检测任务进行定制和优化。考虑到YOLOv8的先进性,我们预计它将提供最佳的检测性能,同时,通过对YOLOv7、v6、v5的并行测试,确定不同版本对特定场景的适应性。
- 数据增强和迁移学习:为了增强模型的泛化能力,我们将应用多种数据增强技术,如随机裁剪、缩放、旋转等,以及颜色空间的调整。此外,采用迁移学习策略,从在大规模自然图像数据集上预训练的模型开始,细致调整以适应火焰检测任务,从而提升训练效率和模型性能。
- 技术框架和开发工具
- 使用PyTorch框架:PyTorch以其灵活性和强大的GPU加速功能,成为我们开发深度学习模型的首选框架。PyTorch不仅支持快速原型设计,还便于在后期进行模型的调整和优化。
- 基于Streamlit的交互界面:利用Streamlit构建用户交互界面,它支持快速开发且易于部署的Web应用程序。通过Streamlit,我们能够轻松集成图片、视频和实时摄像头的火焰检测功能,并实现模型的动态切换。
- 界面美化使用CSS:使用CSS进一步美化Streamlit界面,提高用户体验。通过定制化的样式,使界面更加直观和友好。
- 开发工具IDE使用PyCharm:选择PyCharm作为开发环境,它提供了强大的代码编辑、调试和版本控制功能,极大地提高了开发效率和代码质量。
- 功能实现和系统设计
- 多输入源支持:设计系统支持多种输入源,包括静态图片、视频文件以及实时摄像头流。这样不仅能够满足不同用户场景的需求,也能够在多样化的测试环境下评估模型性能。
- 动态模型切换:提供一个用户友好的接口,允许用户根据具体需求选择不同的YOLO模型版本进行检测。这一特性增加了系统的灵活性,使用户能够根据实际情况选择最合适的模型。
- 高效数据处理和存储:考虑到火焰检测过程中将处理大量图像和视频数据,我们采用PyTorch的高效数据预处理和加载机制,并设计了高效的数据存储方案,确保了快速的数据处理和易于管理的存储结构。
通过实施上述方法,我们的目标是开发出一个既高效又准确的火焰检测系统,不仅能够满足实时监控的需求,还能提供直观易用的用户交互界面,为用户提供一个全面、便捷的火焰检测解决方案。
2.4 博文贡献与组织结构
本文全面介绍了基于YOLOv8/v7/v6/v5的火焰检测系统,详细阐述了从文献综述到系统实现的整个研究过程。文章的主要贡献如下:
- 综合文献综述:本文提供了关于火焰检测领域内现有研究的全面综述,特别是深度学习方法在火焰检测中的应用,为后续研究提供了坚实的理论基础。
- 数据集处理与增强:详细介绍了数据集的准备、处理和增强技巧,包括如何通过数据增强技术提高模型的泛化能力和准确性,这对于深度学习项目的成功至关重要。
- 算法选择与优化:深入探讨了YOLOv8/v7/v6/v5等算法的选择理由、结构特点及其在火焰检测任务中的应用,特别是对YOLOv8的改进和优化策略,显著提升了检测效率和准确率。
- 友好的交互界面设计:采用Streamlit框架设计了一个美观且用户友好的网页界面,使得火焰检测不仅限于研究人员和专业人士,普通用户也能轻松使用。
- 算法性能对比:通过实验详细对比了YOLOv7、v6、v5等不同版本算法在火焰检测任务上的效果,为读者选择适合自己需求的算法提供了参考。
- 资源分享:文章附带了完整的数据集和代码资源包,包括模型预测与训练代码,使得读者能够轻松复现实验结果,甚至在此基础上进行进一步的研究和开发。
后续章节的组织结构如下: 绪论:介绍研究背景、目的和本文的主要贡献;算法原理:详细介绍YOLOv8/v7/v6/v5等算法的工作原理及其在火焰检测中的应用;数据集处理:讨论使用的数据集及其预处理、增强方法。代码介绍:提供模型训练和预测的详细代码说明,包括环境搭建、参数配置和执行步骤。实验结果与分析:展示不同模型在火焰检测任务上的实验结果,并进行比较分析。系统设计与实现:介绍基于Streamlit的火焰检测系统的设计与实现细节。结论与未来工作:总结本文的研究成果,并讨论未来的研究方向和潜在的改进空间。
3. 数据集处理
在本研究的火焰检测任务中,我们精心准备并详细介绍了一个专门为此目的构建的数据集。数据集总计包含3893张图像,其中2725张用于训练深度学习模型,780张用于验证模型的泛化能力,以及388张用于测试模型在未知数据上的性能。这种划分确保了评估过程的全面性和公正性,为模型优化提供了严格的基准。博主使用的类别如下:
Chinese_name = {'fire': "火焰"}
在数据的预处理阶段,每张图像都经过自动方向调整,以确保一致的呈现。为了符合YOLO模型对输入尺寸的要求,所有的图像被统一缩放至416x416像素,这一操作不仅标准化了输入数据的尺寸,同时也减少了模型需要处理的变化范围。数据增强技术的应用进一步提升了模型对现实世界变化的适应性。我们使用了一系列技术,包括随机水平翻转、旋转、曝光调整、高斯模糊以及对图像应用椒盐噪声。这些技术模拟了现实世界中可能影响火焰图像识别的各种因素,如不同的观看角度、光照变化以及图像捕捉过程中的随机噪声。
我们的数据集分布分析进一步揭示了火焰在图像中的空间分布倾向和尺寸特点。大多数火焰标注位于图像的中心区域,显示了在图像采集阶段火焰被置于中心的趋势。火焰标注的大小大多集中在中等范围,表明了尺寸上的一致性。这种分布对确定目标检测模型中锚框的尺寸范围和比例尤为重要。通过对这些数据特点的分析,我们在模型的设计和训练策略上作出了针对性的调整,以适应数据集的特定特性。
在设计模型时,这些数据集特性被用来指导模型的架构和训练过程。例如,YOLOv8模型在训练过程中可能会特别关注图像中心区域的火焰识别,同时在数据增强时引入更多边缘区域的样本,以确保模型对全图范围内的火焰都有良好的识别能力。我们也注意到,数据集中的火焰尺寸集中在一个相对较小的范围内,这允许模型更专注于这些常见尺寸的火焰检测,而不是被极端大小的异常值干扰。
通过以上介绍,我们的数据集不仅为火焰检测模型的训练提供了丰富的、现实条件下的样本,还通过详尽的预处理和增强技术,为模型的鲁棒性和准确性提供了坚实的基础。
4. 原理与代码介绍
4.1 YOLOv8算法原理
在目标检测的世界中,YOLOv8代表了技术的最新进展。它是在YOLO(You Only Look Once)系列算法发展中的又一重要里程碑。作为一个高效的目标检测模型,YOLOv8继承了YOLO系列算法的核心思想,即在单次前向传播中同时预测多个目标的类别和位置,实现了检测的实时性和准确性的平衡。
YOLOv8的结构延续了YOLO系列算法的设计哲学,整体框架被划分为三个主要部分:Backbone(主干网络)、Neck(颈部网络)和Head(头部网络)。在Backbone中,YOLOv8采用了CSP(Cross Stage Partial networks)结构,这种设计通过在网络的不同阶段引入部分连接,有效地降低了计算复杂度并提高了特征传递的效率。CSP结构的核心在于模块化设计,它允许网络部分地重复使用特征,从而实现更加高效的特征学习。此外,YOLOv8的Backbone部分还集成了SPP(Spatial Pyramid Pooling)和C2F(Coarse-to-Fine)结构,这些结构进一步丰富了网络对不同尺度特征的提取能力,使得检测过程可以更好地处理各种尺度的目标。
Neck部分是连接Backbone和Head的桥梁,它在特征层次化和特征融合方面发挥着关键作用。YOLOv8在这一部分采用了PANet(Path Aggregation Network)和BiFPN(Bidirectional Feature Pyramid Network)这两种结构,这些技术的引入,使网络能够更有效地在不同的分辨率层次间进行特征融合,强化了模型对多尺度目标的检测能力。
在Head部分,YOLOv8进行目标的最终检测和分类。这个部分是整个模型中直接关联到目标检测性能的关键环节。在这里,YOLOv8引入了多种anchor的设计来适配不同大小的目标,并使用了多尺度预测以提高检测的准确率和召回率。此外,为了进一步优化检测性能,YOLOv8还采用了自适应标签分配(adaptive label assignment)机制,这一机制能够动态地调整标签分配策略,确保模型在训练过程中对正负样本的分配更加精确,从而提升了整体的检测性能。
YOLOv8的训练过程也体现了算法的先进性。例如,通过引入AutoML技术自动优化网络结构,使得模型结构更加贴合实际的检测需求。这些技术的应用,保证了YOLOv8在面对各种复杂场景时都能保持出色的性能表现。此外,YOLOv8还采用了先进的损失函数,比如CIoU和DIoU,这些损失函数专门用于更好地优化边界框的位置和大小,从而进一步提高模型在实际应用中的精度和鲁棒性。
总体来说,YOLOv8通过其创新的网络结构和训练技术,不仅提高了目标检测的速度和准确性,还确保了模型在面对各种尺度和复杂性的目标时都能保持良好的性能。这些进步不仅推动了目标检测技术的发展,也为相关应用领域带来了新的可能性。
4.2 模型构建
在本节中,我们将详细介绍构建火焰检测模型所需的代码实现。该实现涉及图像处理、深度学习模型的加载与运行,以及结果的解析等关键步骤。代码使用了Python编程语言,并结合了OpenCV、PyTorch以及专门的YOLO处理库ultralytics,这些工具的结合为开发高效准确的火焰检测模型提供了坚实的基础。
首先,系统依赖于OpenCV和PyTorch这两个库,它们是处理图像数据和执行复杂的数值计算的工作基础。OpenCV是一个开源计算机视觉库,提供了数以千计的计算机视觉算法。PyTorch则是一个机器学习库,它不仅支持强大的数据处理和深度学习功能,还提供了易用的API和灵活的网络构建工具,适用于快速的研究原型开发和生产部署。
import cv2
import torch
from QtFusion.models import Detector
from datasets.label_name import Chinese_name
from ultralytics import YOLO
from ultralytics.utils.torch_utils import select_device
为了运行火焰检测任务,我们首先需要选择合适的计算设备。在这段代码中,这是通过检查是否有CUDA(即NVIDIA的GPU加速计算平台)可用来实现的。若CUDA可用,则选择使用GPU(通常标记为"cuda:0");如果不可用,则退回到CPU。这样做可以确保模型的训练和推理过程能够利用GPU的强大计算能力,从而提高效率。接下来,我们设置了模型运行的初始化参数,如设备类型、置信度阈值和IOU阈值。置信度阈值定义了模型预测物体存在的最低置信度,而IOU阈值则用于非极大值抑制,这是一种减少重复检测的方法。通过这些参数,我们可以微调模型的检测灵敏度和性能。
device = "cuda:0" if torch.cuda.is_available() else "cpu"
ini_params = {
'device': device,
'conf': 0.25,
'iou': 0.5,
'classes': None,
'verbose': False
}
为了对检测到的类别进行计数,我们定义了count_classes函数,它接受检测结果和类别名称列表,返回每个类别的计数。这对于分析模型在不同类别上的检测效果非常有用。
def count_classes(det_info, class_names):
count_dict = {name: 0 for name in class_names}
for info in det_info:
class_name = info['class_name']
if class_name in count_dict:
count_dict[class_name] += 1
count_list = [count_dict[name] for name in class_names]
return count_list
在定义了YOLOv8v5Detector类之后,我们实现了模型的几个关键步骤:加载模型、预处理图像、进行预测和后处理结果。load_model方法利用了ultralytics库的YOLO类和select_device函数,这确保了我们的模型能够在正确的硬件上运行。模型路径作为参数传递,YOLO类将负责加载训练好的权重。图像的预处理由preprocess方法完成,虽然在我们的示例代码中这个方法只是简单地将图像传递下去,但这是处理图像尺寸调整、归一化或数据格式转换等操作的理想地点。
class YOLOv8v5Detector(Detector):
def __init__(self, params=None):
super().__init__(params)
self.model = None
self.img = None
self.names = list(Chinese_name.values())
self.params = params if params else ini_params
def load_model(self, model_path):
self.device = select_device(self.params['device'])
self.model = YOLO(model_path)
names_dict = self.model.names
self.names = [Chinese_name[v] if v in Chinese_name else v for v in names_dict.values()]
self.model(torch.zeros(1, 3, *[self.imgsz] * 2).to(self.device).type_as(next(self.model.model.parameters())))
def preprocess(self, img):
self.img = img
return img
def predict(self, img):
results = self.model(img, **ini_params)
return results
def postprocess(self, pred):
results = []
for res in pred[0].boxes:
for box in res:
class_id = int(box.cls.cpu())
bbox = box.xyxy.cpu().squeeze().tolist()
bbox = [int(coord) for coord in bbox]
result = {
"class_name": self.names[class_id],
"bbox": bbox,
"score": box.conf.cpu().squeeze().item(),
"class_id": class_id,
}
results.append(result)
return results
def set_param(self, params):
self.params.update(params)
predict方法是模型进行前向计算的地方。传入处理过的图像,YOLO模型执行推理,并返回原始的检测结果。这些结果接着被传递到postprocess方法,后者负责解析模型输出,将每个检测对象的数据(如类别、位置、置信度)提取出来,并将其转换为一个容易理解和使用的格式。
最终,所有这些步骤集成在YOLOv8v5Detector类中,提供了一个流畅的端到端火焰检测流程。通过此类,用户可以方便地调用方法来加载模型、处理图像、进行预测,并获得直观的后处理结果。这不仅加快了开发流程,还简化了从原始图像到最终检测结果的路径,为火焰检测研究和应用提供了一条高效的途径。
4.3 训练代码
在我们的火焰检测项目中,模型训练是实现高性能检测的决定性步骤。为了训练一个精确的模型,我们采用了经过预训练的YOLOv8网络,并对其进行了细致的配置和优化。以下是训练流程的详细介绍,它展示了如何从准备数据到实际训练模型的每一个关键阶段。以下表格详细介绍了YOLOv8模型训练中使用的一些重要超参数及其设置:
超参数 | 设置 | 说明 |
---|---|---|
学习率(lr0 ) | 0.01 | 决定了模型权重调整的步长大小,在训练初期有助于快速收敛。 |
学习率衰减(lrf ) | 0.01 | 控制训练过程中学习率的降低速度,有助于模型在训练后期细致调整。 |
动量(momentum ) | 0.937 | 加速模型在正确方向上的学习,并减少震荡,加快收敛速度。 |
权重衰减(weight_decay ) | 0.0005 | 防止过拟合,通过在损失函数中添加正则项减少模型复杂度。 |
热身训练周期(warmup_epochs ) | 3.0 | 初始几个周期内以较低的学习率开始训练,逐渐增加到预定学习率。 |
批量大小(batch ) | 16 | 每次迭代训练中输入模型的样本数,影响GPU内存使用和模型性能。 |
输入图像大小(imgsz ) | 640 | 模型接受的输入图像的尺寸,影响模型的识别能力和计算负担。 |
环境设置与模型加载:首先,我们导入了必要的Python库和模块。os和yaml用于处理文件路径和读取数据配置文件,而torch是我们的深度学习框架。另外,我们从ultralytics库中导入了YOLO类,这是我们将要训练的深度学习模型。
import os
import torch
import yaml
from ultralytics import YOLO # 用于加载YOLO模型
from QtFusion.path import abs_path # 用于获取文件的绝对路径
为了最大化硬件的利用率,我们检测了CUDA的可用性,并据此决定了模型运行在GPU上还是CPU上。
device = "0" if torch.cuda.is_available() else "cpu"
数据集准备:在这里,我们还设定了数据加载过程中所使用的工作进程数(workers)和每个批次的大小(batch)。使用更多的工作进程可以加速数据的读取,而批次大小则直接关联到训练的内存消耗和梯度更新频率。接着,我们通过指定数据集的配置文件路径,模型可以了解如何找到和使用训练、验证以及测试图像。这些信息是在一个YAML文件中提供的,它详细描述了数据集的结构,包括类别标签和图像文件的路径。
workers = 1 # 工作进程数
batch = 8 # 每批处理的图像数量
data_name = "FireDatasets"
data_path = abs_path(f'datasets/{data_name}/{data_name}.yaml', path_type='current')
unix_style_path = data_path.replace(os.sep, '/')
为了保证文件路径的一致性和正确性,我们采用了os和yaml库对数据配置文件进行读取和修改。这项工作确保了无论在什么系统上,无论代码运行在哪个目录下,路径总能被正确解析。
directory_path = os.path.dirname(unix_style_path)
with open(data_path, 'r') as file:
data = yaml.load(file, Loader=yaml.FullLoader)
if 'path' in data:
data['path'] = directory_path
with open(data_path, 'w') as file:
yaml.safe_dump(data, file, sort_keys=False)
训练模型:一旦数据路径配置正确,我们便加载了YOLOv8模型,这是通过引入ultralytics库中的YOLO类完成的。该库提供了一种简便的方法来加载预训练的权重和配置文件,这是训练过程中最关键的部分之一。预训练的模型能够帮助我们迅速开始训练,并且预计能在短时间内达到一个较高的准确率。最后,我们通过调用模型的train函数启动了训练过程。在这个函数中,我们传递了一系列参数,以便精确地配置训练过程。包括指定数据配置文件的路径、选择的计算设备、工作线程数、输入图像的大小、训练周期(epochs)数量和每批次的图像数量。此外,我们还指定了训练任务的名称,便于日后识别和参考。
model = YOLO(abs_path('./weights/yolov5nu.pt', path_type='current'), task='detect') # 加载预训练的YOLOv8模型
# model = YOLO('./weights/yolov5.yaml', task='detect').load('./weights/yolov5nu.pt') # 加载预训练的YOLOv8模型
# Training.
results = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v5_' + data_name # 指定训练任务的名称
)
model = YOLO(abs_path('./weights/yolov8n.pt'), task='detect') # 加载预训练的YOLOv8模型
results2 = model.train( # 开始训练模型
data=data_path, # 指定训练数据的配置文件路径
device=device, # 自动选择进行训练
workers=workers, # 指定使用2个工作进程加载数据
imgsz=640, # 指定输入图像的大小为640x640
epochs=120, # 指定训练100个epoch
batch=batch, # 指定每个批次的大小为8
name='train_v8_' + data_name # 指定训练任务的名称
)
通过上述设置,我们确保了训练过程既高效又准确。使用合适的数据、合理配置的训练参数和强大的预训练模型,我们的火焰检测系统在准确识别各种火焰现象方面具备了良好的基础。
5. 实验结果与分析
5.1 训练曲线
在深度学习的训练过程中,损失函数和评价指标的图像提供了对模型性能和学习进度的直观理解。图像展示了在训练YOLOv8模型过程中的多个关键指标,包括损失函数值、精确度(Precision)、召回率(Recall)以及平均精度(mAP)。以下是对这些图像的分析。
首先,损失函数值是训练过程中最直接的反馈,它们表明了模型在特定任务上的表现。从训练和验证损失图中可以看出,随着训练的进行,损失函数值持续下降,表明模型在学习数据集特征并逐渐提高其预测的准确性。具体来说,train/box_loss、train/cls_loss和train/obj_loss三个图显示了模型对边界框位置、类别分类和目标检测的损失值,都随着训练的进行而减少。这是一个积极的信号,意味着模型在辨识火焰的边界、类别和存在性方面的表现越来越好。
此外,验证损失值虽然初始较高,但随着训练的进行,val/box_loss、val/cls_loss和val/obj_loss迅速下降并趋于平稳,这说明模型对于未见过的数据也有着良好的预测能力,避免了过拟合的问题。这是模型泛化能力的一个重要指标,对于我们希望模型能在实际应用中准确预测火焰非常关键。
接着,我们看到精确度和召回率在训练过程中表现出较为稳定的趋势,维持在较高水平。精确度衡量的是模型预测为正的样本中,实际为正的比例;而召回率衡量的是在所有实际为正的样本中,模型预测为正的比例。两者的平衡是检测任务的关键,特别是在火灾监测这样对准确性要求极高的应用中。图中显示的稳定趋势意味着模型能够在减少误检的同时,仍然保持对火焰的高识别率。
最后,平均精度(mAP)提供了一个综合的性能指标,它考虑了不同置信度阈值下的精确度和召回率。图中的metrics/mAP@0.5和metrics/mAP@0.5:0.95分别代表在单一阈值0.5和多个阈值(从0.5到0.95)上的mAP值。我们可以看到,这两个指标在训练过程中逐渐上升并趋于稳定,这表示模型的整体性能达到了较高的水平,尤其是在较为严格的评价标准下仍保持了良好的性能。
通过这些图像的分析,我们可以得出结论,模型在训练过程中表现出色,损失函数值的降低以及精确度和召回率的稳定,都预示着模型在火焰检测任务上的有效性。
5.2 PR曲线图
Precision-Recall (PR) 曲线是评估目标检测模型性能的关键工具之一,它揭示了模型识别正类别目标(在本案例中为火焰)的能力。PR 曲线通过绘制不同置信度阈值下的精确度(Precision)与召回率(Recall)的关系,为我们提供了模型性能的直观视图。
从图中,我们可以观察到随着召回率的提高,精确度呈现逐渐下降的趋势。这是因为随着召回率提升(即模型试图捕获更多的正样本),模型将更多的边界情况或模糊样本判定为正类别,这往往会导致更多的误报,因此精确度有所下降。理想情况下,我们希望模型在高召回率的同时也能保持高精确度,但这在实际应用中往往需要平衡。
曲线在高召回率区间仍保持了相对较高的精确度,这表明模型具有较好的检测能力,能够在识别出大部分火焰的同时,保持较低的误报率。曲线中的阶梯形状可能是由于数据集中样本分布不均或模型对某些类型火焰的识别能力有所波动。
图中还展示了曲线下方的面积,即模型的平均精度(mAP),在本例中为0.867。mAP是模型整体性能的一个度量,它取值范围从0到1,值越高表明模型性能越好。在这里,mAP值为0.867表示模型具有很高的准确度,在大多数情况下能够正确地识别火焰。这个结果对于火焰检测来说是相当可靠的,考虑到火灾检测的紧迫性和重要性,一个高mAP值确保了系统在实时应用中的可靠性。
综上所述,PR曲线和mAP值表明了我们的模型在火焰检测任务上的出色性能。高召回率表明模型能够检测到大多数的火焰,而较高的精确度则减少了误报的可能性,这两者的结合使得模型在实际应用中能够有效地识别火焰,为早期火灾预警和应对提供了强有力的工具。这样的性能评估是对模型继续调优和部署到实际应用环境的坚实基础。
5.3 YOLOv8/v7/v6/v5对比实验
(1)实验设计:
本实验旨在评估和比较YOLOv5、YOLOv6、YOLOv7和YOLOv8几种模型在火焰目标检测任务上的性能。为了实现这一目标,博主分别使用使用相同的数据集训练和测试了这四个模型,从而可以进行直接的性能比较。该数据集包含火焰的图像。本文将比较分析四种模型,旨在揭示每种模型的优缺点,探讨它们在工业环境中实际应用的场景选择。
模型 | 图像大小 (像素) | mAPval 50-95 | CPU ONNX 速度 (毫秒) | A100 TensorRT 速度 (毫秒) | 参数数量 (百万) | FLOPs (十亿) |
---|---|---|---|---|---|---|
YOLOv5nu | 640 | 34.3 | 73.6 | 1.06 | 2.6 | 7.7 |
YOLOv8n | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
YOLOv6N | 640 | 37.5 | - | - | 4.7 | 11.4 |
YOLOv7-tiny | 640 | 37.4 | - | - | 6.01 | 13.1 |
(2)度量指标:
- F1-Score:F1-Score 作为衡量模型性能的重要指标,尤其在处理类别分布不均的数据集时显得尤为关键。它通过结合精确率与召回率,提供了一个单一的度量标准,能够全面评价模型的效能。精确率衡量的是模型在所有被标记为正例中真正属于正例的比例,而召回率则关注于模型能够识别出的真正正例占所有实际正例的比例。F1-Score通过两者的调和平均,确保了只有当精确率和召回率同时高时,模型的性能评估才会高,从而确保了模型对于正例的预测既准确又完整。
- mAP(Mean Average Precision):在目标检测任务中,Mean Average Precision(mAP)是评估模型性能的重要标准。它不仅反映了模型对单个类别的识别精度,而且还考虑了所有类别的平均表现,因此提供了一个全局的性能度量。在计算mAP时,模型对于每个类别的预测被单独考虑,然后计算每个类别的平均精度(AP),最后这些AP值的平均数形成了mAP。
名称 | YOLOv5nu | YOLOv6n | YOLOv7-tiny | YOLOv8n |
---|---|---|---|---|
mAP | 0.867 | 0.867 | 0.834 | 0.867 |
F1-Score | 0.82 | 0.84 | 0.81 | 0.82 |
(3)实验结果分析:
在进行深度学习模型比较时,我们通常关注于一系列关键性能指标来评估模型的优劣。在这次火焰检测的任务中,我们主要关注的是模型的平均精度均值(mAP)和F1-Score。通过这两个指标,我们能够综合考量模型在精确度、召回率和整体检测准确性方面的表现。
从实验结果来看,YOLOv5nu、YOLOv6n和YOLOv8n在mAP指标上都达到了0.867,而YOLOv7-tiny略低,为0.834。在F1-Score方面,YOLOv6n以0.84的得分稍微领先于其他模型。mAP的相似性表明这几个模型在不同置信度阈值下的整体检测性能相当,而YOLOv6n在F1-Score上的领先则表明它在精确度和召回率的平衡上做得更好。
为什么YOLOv6n会在这次实验中表现出色?可能的原因有多个。首先,YOLOv6n的网络架构可能更适合处理我们数据集中的特定火焰形态和尺寸。其次,YOLOv6n可能在处理数据集中特有的背景噪声和光照变化方面具有更好的鲁棒性。再次,YOLOv6n可能在训练过程中更好地避免了过拟合,保持了较高的泛化能力。
而YOLOv7-tiny之所以mAP略低,可能是因为其“tiny”版本针对的是更快的推理速度而牺牲了一定的检测性能,特别是在处理复杂场景和较小目标时。另外,它的网络结构可能没有充分捕捉到火焰特征,或者在参数调整和特征提取方面有待优化。尽管YOLOv7-tiny在性能上略逊一筹,但在一些对速度要求更高的实时火焰检测场景中,它可能仍然是一个更合适的选择。因为在实际应用中,模型的选择需要根据具体场景和需求来决定,既要考虑检测的准确性,也要考虑实时性和资源消耗。
总体而言,本次实验的结果为火焰检测任务中模型选择提供了宝贵的参考。它不仅揭示了不同YOLO模型版本在性能上的细微差异,还为未来的研究方向和实践应用指明了方向。未来的研究可以进一步探索不同模型在特定场景下的性能表现,以及如何通过调整模型结构或训练策略来提升性能。通过不断的测试和优化,我们能够发展出更加强大、适应性更好的火焰检测解决方案,为防灾减灾做出更大的贡献。
6. 系统设计与实现
6.1 系统架构概览
在这篇关于基于YOLOv8/v7/v6/v5的火焰检测的博客中,我们将深入探讨系统的架构设计。本系统旨在利用深度学习技术,准确地识别和定位视频或图片中的火焰,为早期火灾预警提供技术支持。接下来,我将详细介绍系统的主要组件和它们之间的交互方式。我们的火焰检测系统主要包含以下几个关键组件:图像处理模块、模型训练与预测模块、用户界面和结果记录与展示模块。这些组件共同工作,形成了一个完整的火焰检测流程。
1. 图像处理模块
图像处理模块是系统的基础,负责对输入的图像或视频帧进行预处理,以适配深度学习模型的需求。该模块使用cv2
库进行图像读取和初步处理,如尺寸调整和归一化。通过frame_process
方法,每一帧图像被调整至模型要求的输入尺寸,如640x640
,以确保模型能够正确解析和识别图像中的火焰。
2. 模型训练与预测模块
在模型训练与预测模块中,我们采用YOLOv8/v7/v6/v5模型作为核心检测算法。这一选择基于YOLO系列模型在目标检测领域内的高效性和准确性。通过YOLOv8v5Detector
类,我们能够加载预训练的火焰检测模型,并对新的图像进行预测。该类支持加载自定义模型,允许用户根据需要选择不同版本的YOLO模型。模型的参数,如置信度阈值conf_threshold
和IOU阈值iou_threshold
,可以通过用户界面动态调整。
3. 用户界面
用户界面是与用户交互的前端,基于streamlit
框架构建。它不仅提供了一个友好的界面,允许用户上传图像或视频进行火焰检测,还提供了模型参数调整的功能。通过setup_sidebar
方法,用户可以选择模型类型、调整置信度阈值和IOU阈值,以及选择不同的输入源(如摄像头或文件)。此外,用户还可以查看检测结果和相关统计信息,为用户提供了丰富的交互体验。
4. 结果记录与展示模块
最后,结果记录与展示模块负责将检测结果以表格和图像的形式展示给用户。LogTable
类记录了每次检测的结果,包括检测到的火焰的位置、置信度以及检测所用时间。frame_process
方法不仅进行图像处理和模型预测,还将检测结果绘制在输出图像上,以便用户直观地看到火焰的位置。用户还可以通过用户界面导出检测结果,以便于后续分析。
6.2 系统流程
在这篇博客中,我们将深入探讨基于YOLOv8/v7/v6/v5的火焰检测系统的流程。我们的系统旨在通过实时视频或图像捕获火焰,以便及时响应火灾情况。接下来,我将通过详细的步骤介绍来解释系统是如何工作的。
-
初始化配置:系统初始化包括加载模型、设置页面配置以及初始化UI组件。通过
Detection_UI
类的__init__
方法,系统会进行初始化。加载标签列表与随机分配颜色:为不同的检测类别(在此场景中为火焰)分配颜色,以便在检测结果中清晰表示;配置页面和侧边栏布局:设置页面标题、模型参数配置(如置信度阈值、IOU阈值)以及输入源选择(摄像头或文件上传)。 -
模型加载与参数设置:系统支持自定义模型文件的加载,以及默认模型权重的应用。根据用户在侧边栏选择的模型文件类型(默认或自定义),系统通过
load_model
方法加载对应的模型权重。此外,用户可以通过滑动条调整模型的置信度阈值和IOU阈值,以满足不同场景下的检测精度需求。 -
选择输入源:用户可通过侧边栏选择输入源,包括实时摄像头捕获或文件上传(图片或视频)。选择后,系统根据输入类型调用不同的处理流程。
-
检测流程: 摄像头实时检测:如果用户选择了摄像头输入,系统将实时捕获视频帧并进行处理,通过
cv2.VideoCapture
获取摄像头视频流,并对每一帧使用frame_process
方法进行预测和检测;文件上传检测:用户上传的图片或视频文件会被读取并逐帧处理。对于图片,系统直接处理上传的图像;对于视频,系统遍历视频的每一帧,同样应用frame_process
方法进行检测。 -
结果处理与显示:无论是实时视频还是文件上传,每一帧的处理结果都会通过
frame_process
方法返回,其中包含处理后的图像、检测信息和选择信息列表。处理后的图像会展示在主页面上,检测信息(包括检测对象的名称、位置、置信度等)会显示在侧边栏的表格中。 -
日志记录与结果导出:系统将所有检测结果记录在日志中,用户可以通过点击“导出结果”按钮,将检测结果和相关信息导出为CSV文件,便于后续分析和报告。
-
用户交互 :用户可以通过侧边栏进行各种设置,如选择显示模式、调整模型参数、选择输入源等。此外,用户还可以通过目标过滤功能,筛选特定类型的检测结果进行查看。
通过以上步骤,基于YOLOv8/v7/v6/v5的火焰检测系统能够有效地识别视频或图片中的火焰,为火灾预防和响应提供了一个强有力的工具。用户友好的界面和灵活的配置选项使得系统不仅适用于专业人员,也便于普通用户的使用。
代码下载链接
如果您希望获取博客中提及的完整资源包,包含测试图片、视频、Python文件(*.py)、网页配置文件、训练数据集、代码及界面设计等,可访问博主在面包多平台的上传内容。相关的博客和视频资料提供了所有必要文件的下载链接,以便一键运行。完整资源的预览如下图所示:
资源包中涵盖了你需要的训练测试数据集、训练测试代码、UI界面代码等完整资源,完整项目文件的下载链接可在下面的视频简介中找到➷➷➷
演示及项目介绍视频:https://www.bilibili.com/video/BV1UM4m1R7PF/
完整安装运行教程:
这个项目的运行需要用到Anaconda和Pycharm两个软件,下载到资源代码后,您可以按照以下链接提供的详细安装教程操作即可运行成功,如仍有运行问题可私信博主解决:
- Pycharm和Anaconda的安装教程:https://deepcode.blog.csdn.net/article/details/136639378;
软件安装好后需要为本项目新建Python环境、安装依赖库,并在Pycharm中设置环境,这几步采用下面的教程可选在线安装(pip install直接在线下载包)或离线依赖包(博主提供的离线包直接装)安装两种方式之一:
- Python环境配置教程:https://deepcode.blog.csdn.net/article/details/136639396(2,3方法可选一种);
- 离线依赖包的安装指南:https://deepcode.blog.csdn.net/article/details/136650641(2,3方法可选一种);
如使用离线包方式安装,请下载离线依赖库,下载地址:https://pan.baidu.com/s/1uHbU9YzSqN0YP_dTHBgpFw?pwd=mt8u (提取码:mt8u)。
7. 结论与未来工作
在本系列博客中,我们深入探讨了基于YOLOv8/v7/v6/v5的火焰检测系统的设计与实现。通过精心设计的系统架构和流程,我们成功地开发了一个能够实时检测和识别火焰的智能系统。该系统不仅可以处理实时视频流,也能对上传的图片和视频文件进行快速准确的火焰检测,极大地提高了火灾预警的效率和准确性。
系统的实现展示了深度学习和计算机视觉技术在火灾检测领域的强大应用能力。通过使用先进的YOLO模型,我们的系统能够在复杂的环境中准确识别出火焰,即使在光照变化、遮挡等不利条件下也能保持较高的识别率。此外,系统的用户界面友好、操作简单,使得非专业人员也能轻松使用,进一步拓宽了其应用范围。
尽管我们的火焰检测系统已经取得了显著的成效,但仍有进一步改进和优化的空间。未来工作可以从以下几个方面入手:
- 模型优化:持续跟踪深度学习领域的最新进展,探索更高效、更准确的模型结构,以提高检测的准确率和速度。
- 数据集丰富:扩大和多样化训练数据集,特别是增加更多种类的火焰以及各种背景环境下的火焰数据,以提高模型的泛化能力和鲁棒性。
- 算法优化:进一步研究和优化检测算法,如改进目标跟踪机制、增强对遮挡和光照变化的适应性等,以提高检测的稳定性和实用性。
- 系统集成:探索与其他安防系统的集成方案,如与烟雾检测、温度监测等系统联动,构建更为全面的火灾预警和应急响应平台。
- 应用拓展:将火焰检测技术应用于更广泛的领域,如森林火灾监测、工业安全防护等,为社会安全提供更多层次的保障。
通过不断的技术迭代和优化,我们相信未来的火焰检测系统将更加智能、高效,为防范和应对火灾灾害提供更加有力的技术支撑。我们期待着深度学习和计算机视觉技术在这一领域的更多创新和突破,共同为保护人类生命财产安全做出更大的贡献。
Li Z, Mihaylova L, Yang L. A deep learning framework for autonomous flame detection[J]. Neurocomputing, 2021, 448: 205-216. ↩︎
Ghali R, Jmal M, Souidene Mseddi W, et al. Recent advances in fire detection and monitoring systems: A review[C]//Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol. 1. Springer International Publishing, 2020: 332-340. ↩︎
Khan A, Sohail A, Zahoora U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial intelligence review, 2020, 53: 5455-5516. ↩︎
Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2625-2634. ↩︎
Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26. ↩︎