优雅的画图
文章平均质量分 93
plotly等优美画图工具
算法驯化师
1. 多年面试官经验、欢迎咨询各类简历修改、面试经验、求职准备;
2. 混迹多个大厂搜索、推荐、广告、内容、数据挖掘、数据分析等多个岗位工作,目前大模型算法驯化师;
展开
-
【Plotly-驯化】一文画出漂亮的流量漏斗图:plotly.funnel函数使用技巧
流量漏斗图是一种用于展示用户在完成某个目标的过程中,各个阶段的转化率和流失率的图表。它可以帮助我们理解用户行为,并识别转化过程中的瓶颈。Plotly是一个强大的图表库,它能够创建交互式的流量漏斗图,使得数据探索更加直观和动态。流量漏斗图的核心在于计算每个阶段的用户转化率和流失率。转化率阶段的离开用户数阶段的进入用户数×100转化率=( 阶段的离开用户数/阶段的进入用户数)×100%转化率阶段的离开用户数阶段的进入用户数×100流失率100流失率=100%−转化率流失率100。原创 2024-08-03 11:04:57 · 999 阅读 · 0 评论 -
【Plotly-驯化】一文教您画出Plotly中动态可视化饼图:pie技巧
饼图是一种用于展示数据占比的图表,通过将圆分成多个扇形,每个扇形的角度和面积表示数据的比例。Plotly是一个流行的图表库,它能够创建交互式的饼图,允许用户探索数据的分布。饼图的每个扇形由中心角决定,中心角的大小与数据值成比例。σvn∗360σnv∗360Plotly的饼图为展示数据占比提供了一种直观且交互性强的方式。通过本博客的代码示例,我们学习了如何使用Plotly绘制饼图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用饼图进行数据可视化,使你的数据展示更加生动和有趣。原创 2024-07-30 11:06:55 · 917 阅读 · 0 评论 -
【Plotly-驯化】一文教你学会画最美动态可视化的热力图:heatmap技巧
热力图是一种通过颜色变化展示数据矩阵中数值大小的图表,常用于展示变量间的相关性或数据分布模式。Plotly是一个交互式图表库,它能够创建美观且功能丰富的热力图,允许用户通过悬停查看具体数值,缩放图表等。颜色映射:数据值映射到颜色空间,通常使用渐变色来表示数值的大小。矩阵布局:数据以矩阵形式排列,每个单元格的数值通过颜色深浅展示。Plotly的热力图是探索和展示变量间关系的有力工具。通过本博客的代码示例,我们学习了如何使用Plotly绘制热力图,并定制图表的样式和布局。原创 2024-07-27 12:20:52 · 1175 阅读 · 0 评论 -
【Plotly-驯化】一文教你通过plotly画出动态可视化多变量分析:create_scatterplotmatrix
是 Plotly 中的一个函数,用于创建散点图矩阵,它允许用户在一个图表中可视化数据集中多个变量之间的两两关系。这对于初步的数据探索和理解变量间的相关性非常有用。散点图矩阵背后的数学原理是简单的:对于每一对变量,它绘制一个散点图,其中一变量作为 x 轴,另一变量作为 y 轴。没有特定的公式推导,但是理解散点图中的相关性、趋势和异常值对于分析是有帮助的。Plotly 的 create_scatterplotmatrix 函数是一个强大的工具,用于快速探索多个变量之间的关系。原创 2024-07-26 13:49:47 · 787 阅读 · 0 评论 -
【Plotly-箱型图】一文搭建python中画出最美箱型图Boxplot用法技巧
箱型图(Boxplot)是一种用于展示一组数据分布特征的统计图表,它能够提供数据的最小值、第一四分位数(Q1)、中位数(Q2)、第三四分位数(Q3)和最大值的摘要信息,并且可以直观地识别出数据中的异常值。Plotly是一个强大的图表库,它可以创建交互式的箱型图,增强了数据探索的能力。最小值:数据集中的最小非异常值。第一四分位数(Q1):数据集中25%位置的值。中位数(Q2,Median):数据集中50%位置的值。第三四分位数(Q3):数据集中75%位置的值。最大值:数据集中的最大非异常值。原创 2024-07-25 13:56:53 · 976 阅读 · 0 评论 -
【Plotly-柱状图】一文搞懂plotly中柱状图bar用法技巧
柱状图是一种常用的数据可视化手段,用于展示不同类别的数据对比。Plotly是一个强大的图表库,它可以创建交互式的柱状图,允许用户通过悬停、点击等操作来探索数据。Plotly的柱状图为数据的可视化提供了一种直观且交互性强的方式。通过本博客的代码示例,我们学习了如何使用Plotly绘制柱状图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用Plotly进行数据可视化,使你的数据展示更加生动和有趣。原创 2024-07-24 13:54:33 · 860 阅读 · 0 评论 -
【Plotly-折线图】一文搭建python中画出最美折线图plotly.iplot用法技巧
折线图是数据可视化中用于展示数据随时间或有序类别变化趋势的经典图表类型。Plotly是一个交互式图表库,它能够创建丰富、动态且高度可定制的折线图,为用户提供了探索数据的全新方式。Plotly提供了一种现代且交互式的方式来创建折线图,它不仅能够展示数据的趋势,还能够提供丰富的用户交互体验。通过本博客的代码示例,我们学习了如何使用Plotly绘制折线图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用Plotly进行动态数据可视化。原创 2024-07-23 11:10:20 · 1344 阅读 · 0 评论 -
【Plotly-环境搭建】一文搞懂python最美画图工具plotly环境搭建
Plotly 是一个交互式的数据可视化工具,在数据科学和数据可视化领域得到了广泛的应用。它提供了丰富的绘图类型和高度可定制的图表,可以用于创建漂亮的、交互式的数据可视化图形。Plotly 可以通过 Python、R、JavaScript 等多种编程语言进行使用,并且提供了各种形式的 API、SDK 和工具包。其中,Plotly Python 是 Plotly 提供的一个 Python 库,它可以帮助开发者在 Python 环境中进行数据处理和数据可视化。原创 2024-07-22 11:15:42 · 959 阅读 · 0 评论 -
【Seaborn-驯化】一文学会seaborn中的多变量关系图:Pairplot
pairplot 是 Seaborn 库中的一个多功能图表,用于绘制数据集中所有可能的成对关系。它生成一个网格图,每个单元格显示一个变量对的分布图,如散点图、直方图或 KDE 曲线,非常适合于初步的数据探索和可视化。这里又说一遍散点图,是为了和前面的因子变量散点图相区分,前面的因子变量散点图,讲的是不同因子水平的值绘制的散点图,而这里是两个数值变量值散点图关系。为什么要用lmplot呢,说白了就是,先将这些散点画出来,然后在根据散点的分布情况拟合出一条直线。原创 2024-07-19 14:01:39 · 931 阅读 · 0 评论 -
【Seaborn-驯化】一文学会seaborn中的双变量关系图使用技巧:jointplot
jointplot 是 Seaborn 库中的一个强大工具,用于可视化两个变量的联合分布。它结合了散点图、直方图、核密度估计(KDE)等多种图表类型,提供了对数据分布和关系的深入理解。联合分布:表示两个随机变量取值的概率分布。边缘分布:在联合分布中,分别固定一个变量,观察另一个变量的分布。散点图:展示两个变量之间的点对点关系。KDE:核密度估计,用于平滑地展示数据的概率密度函数。原创 2024-07-19 13:59:53 · 938 阅读 · 0 评论 -
【Seaborn-驯化】一文学会seaborn中的直方图使用技巧:histplot
直方图是一种用于展示数据分布的统计图表,它通过将数据分成若干个连续的区间(通常称为“桶”或“bins”),并计算每个区间内的数据点数量来展示数据的分布情况。Seaborn 的 histplot 函数提供了一种灵活且美观的方式来绘制直方图。数据分桶:将数据范围划分为多个连续的非重叠区间。计数:计算每个桶内的数据点数量。绘制:将每个桶的计数以条形的形式展示出来。直方图的高度(或长度)表示每个桶内的计数,而桶的宽度则对应数据的区间范围。原创 2024-07-18 14:03:28 · 923 阅读 · 0 评论 -
【Seaborn-驯化】一文学会seaborn中的回归图使用技巧:regplot
在数据分析中,回归图是一种展示两个变量之间关系的图表。Seaborn库提供了一个名为regplot的函数,用于绘制散点图并添加线性回归线,这使得观察数据趋势和进行线性回归分析变得直观。ywxby=wx+bywxb其中y为因变量,x为自变量,w为自变量的参数,b为常量Seaborn的lmplot函数是一个直观的工具,用于展示两个变量之间的线性关系。通过本博客的代码示例,我们学习了如何使用lmplot绘制回归图,并分析了数据点之间的关系。原创 2024-07-18 13:58:26 · 1225 阅读 · 0 评论 -
【Seaborn-驯化】一文学会seaborn中的折线图使用技巧:lineplot
折线图是最常见的图表类型之一,用于展示数据随时间或有序类别变化的趋势。在Seaborn库中,可以通过lineplot函数轻松创建折线图,它提供了丰富的定制选项,使得折线图既美观又信息丰富。这里又说一遍散点图,是为了和前面的因子变量散点图相区分,前面的因子变量散点图,讲的是不同因子水平的值绘制的散点图,而这里是两个数值变量值散点图关系。为什么要用lmplot呢,说白了就是,先将这些散点画出来,然后在根据散点的分布情况拟合出一条直线。但是用lmplot总觉得不好,没有用scatter来得合适。原创 2024-07-17 13:25:21 · 1138 阅读 · 0 评论 -
【Seaborn-驯化】一文搞懂seaborn画柱状图的使用细节:barplot
直方图是一种常用于展示数据分布的统计图表,它通过将数据分组并计算每组的频数或概率来展示数据的分布情况。在Python中,Seaborn库提供了一个简单易用的barplot函数来绘制直方图。分组:将数据分为若干个连续的区间,这些区间称为“桶”(bins)。计数:计算每个桶中的数据点数量。计算频率/概率:如果需要,将每组的频数除以总数据点数,得到每组的频率或概率。上的值。直方图是一种直观的图表,用于展示数据的分布情况。原创 2024-07-15 10:40:22 · 1058 阅读 · 0 评论 -
【Python画图-seaborn驯化】一文学会seaborn画因子变量图catplot函数使用技巧
catplot 是 Seaborn 库中的一个高级接口,用于创建涉及分类变量(categorical variables)的多种图表。它基于 FacetGrid 类,可以自动处理多个图表的布局,非常适合于展示分类变量之间的比较和分布。catplot 本身不涉及复杂的数学公式推导,它主要是数据可视化的实现。频率或概率:用于计算每个分类的唯一值或出现的次数。均值、中位数:用于展示分类变量的中心趋势。箱型图参数:如四分位数和四分位距,用于展示数据的分散程度。原创 2024-07-08 10:25:57 · 988 阅读 · 0 评论 -
【Python画图-seaborn驯化】一文学会seaborn画散点图scatterplot、swarmplot技巧
散点图是一种用于展示两个变量之间关系的图表。在Seaborn库中,散点图可以通过scatterplot函数方便地绘制,它非常适合用于探索数据集中变量间的相关性、趋势或模式。 散点图本身不涉及复杂的数学公式,它简单地将数据点在二维平面上进行投影。每个数据点的位置由两个变量的值决定:(xi,yi)(x_i,y_i)(xi,yi), 其中xix_ixi和yiy_iyi分别代表第 i 个数据点在x轴和y轴上的值。 我们通过seaborn自带的数据对其进行相关的画图,具体的导入数据代码如下所示:3原创 2024-07-05 10:25:01 · 1071 阅读 · 0 评论 -
【Python画图-驯化seaborn】一文搞懂seaborn中的小提琴图实践、技巧、原理
小提琴图(Violin Plot)是一种用于展示数据分布的图表,它结合了箱线图的特点和密度图的连续性。这种图表可以展示数据的密度估计,从而提供关于数据分布形状和集中趋势的直观信息。小提琴图其实是箱线图与核密度图的结合,箱线图展示了分位数的位置,小提琴图则展示了任意位置的密度,通过小提琴图可以知道哪些位置的密度较高。在图中,白点是中位数,黑色盒型的范围是下四分位点到上四分位点,细黑线表示须。外部形状即为核密度估计(在概率论中用来估计未知的密度函数,属于非参数检验方法之一)。原创 2024-07-04 12:15:02 · 1434 阅读 · 0 评论 -
【Python画图-驯化seaborn】一文搞懂seaborn中的箱线图实践技巧
箱线图(Boxplot)是一种用于展示数据分布的统计图表,它能够提供数据的最小值、第一四分位数(Q1)、中位数(Q2)、第三四分位数(Q3)和最大值的摘要信息,并且可以直观地识别出数据中的异常值。最小值(Minimum):数据集中的最小非异常值。第一四分位数(Q1):数据集中25%位置的值,表示有25%的数据点小于或等于这个值。中位数(Q2,Median):数据集中50%位置的值,将数据集分为两个相等的部分。第三四分位数(Q3):数据集中75%位置的值,表示有75%的数据点小于或等于这个值。原创 2024-07-03 12:28:43 · 1002 阅读 · 1 评论 -
【Python画图-驯化】成功解决mac中Python画图中文显示问题
解决mac中通过python画图显示中文乱码问题原创 2024-07-02 14:38:55 · 1056 阅读 · 0 评论 -
【Python画图-驯化02】Python中常用画图的工具以及基本流程使用seaborn、matplotlib
Python提供了多种绘图和可视化工具,它们可以帮助我们理解、展示和分析数据。从简单的图表到复杂的交互式可视化,Python绘图库如Matplotlib、Seaborn、Plotly和Bokeh等,都是数据科学家和分析师的重要工具。Python绘图工具为数据分析和可视化提供了强大的支持。从基础的Matplotlib到高级的Seaborn,不同的库适合不同的需求和场景。通过本博客的代码示例,我们学习了如何使用这些工具来创建基本的图表和更高级的可视化。希望这篇博客能够帮助你更好地利用Python进行数据可视化。原创 2024-07-02 09:54:01 · 650 阅读 · 0 评论 -
【Python画图-驯化01】一文叫你搭建python画图最优环境配置
一文告诉你如果搭建python最优的画图搭建介绍原创 2024-07-01 13:52:37 · 683 阅读 · 0 评论 -
【Python画图-Matplotlib-01】一文搞懂Matplotlib旋转x轴
在数据分析可视化使用Matplotlib画图时,经常会对数据进行x轴的翻转,默认情况下Matplotlib画图的x轴是0度的,当x轴的值过长时,展示出现的结果会比较难看,本文分享如果对x轴进行翻转。本文介绍了如何使用 Pandas 对数据进行区间划分,并使用 Matplotlib 进行可视化展示。通过 get_cut_cnt 函数,我们可以快速得到数据在不同区间的分布情况,并以条形图的形式直观展示。这种方法在探索数据分布特征时非常有用,可以帮助我们快速识别数据的集中趋势和异常区间。原创 2024-06-17 21:10:41 · 1146 阅读 · 0 评论