poj 3666 Making the Grade (有序序列,离散化dp)

         题目链接:点击打开链接

         题意:给了一个序列A【1,2,3,....n],通过改变数字使之变成有序序列C[1,2,3,...n],求最小改变量sum|ai-ci| 。

         思路:不降序和不升序类似,可以先考虑不降序。可以容易证明最优的方案一定都是有序序列里的数全是原序列中的数。

         如: A : 1 5 3 8      C: 1 3 3 8 或1 5 5 8 ,其他并不优

                  A:  4 5 9 1 2 4 3  C:1 1 1 1 2 4 4

        因此枚举枚举每个位置的元素。那么第i个位置为第j的元素  dp[i][j] = min( dp[i-1][k] ) + abs( Ai - Ci) ,其中dp[i-1][k]表示前i-1个且第i-1个位置为第k(A[k]<=A[j])个元素时前i-1个位置最小的sum|ai-ci| 。

        但是这样前i个的复杂度是O(n^3) 。复杂度有点大,可以优化一下,可以先把A序列排序便成有序B序列,在求dp[i-1][j]时顺便把min(dp[i-1][k])求出来,这样复杂度就降到O(n^2)的了。不懂的可以看代码,代码相对好理解点。

  具体见代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
using namespace std;
#define INF 0x3f3f3f3f
typedef long long LL;
const int maxn =2* 1e3+100;
int A[maxn];
int B[maxn];
LL dp[maxn][maxn];
int n;
LL DP()
{
	int i,j,k;
	memset(dp,-1,sizeof(dp));
	LL ans=-1;
	for(i=1;i<=n;i++)
	{
		for(j=1;j<=n;j++)
		{
			if(i==1)
			{
				dp[i][j]=abs(A[i]-B[j]);
			}
			else
			{
				dp[i][j]=dp[i-1][j]+abs(A[i]-B[j]);
			}
			if(j!=1) dp[i][j]=min(dp[i][j],dp[i][j-1]);//优化
			if(i==n)
			{
				if(ans==-1) ans=dp[i][j];
				else ans=min(ans,dp[i][j]);
			}
		}
	}
	return ans;
}
int main()
{
	int i;
	cin>> n;
	for(i=1;i<=n;i++)
	{
		scanf("%d",&A[i]);
		B[i]=A[i];
	}
	sort(B+1,B+n+1);
	LL ans=DP();           //求不降序的
	for(i=1;i<=n/2;i++)
	{
		int t=A[i];
		A[i]=A[n-i+1];
		A[n-i+1]=t;
	}
	ans=min(ans,DP());     //求不升序的
	cout<<ans<<endl;
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是Java解决POJ3233—矩阵幂序列问题的代码和解释: ```java import java.util.Scanner; public class Main { static int n, k, m; static int[][] A, E; public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); k = sc.nextInt(); m = sc.nextInt(); A = new int[n][n]; E = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { A[i][j] = sc.nextInt() % m; E[i][j] = (i == j) ? 1 : 0; } } int[][] res = matrixPow(A, k); int[][] ans = matrixAdd(res, E); printMatrix(ans); } // 矩阵乘法 public static int[][] matrixMul(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { c[i][j] = (c[i][j] + a[i][k] * b[k][j]) % m; } } } return c; } // 矩阵快速幂 public static int[][] matrixPow(int[][] a, int b) { int[][] res = E; while (b > 0) { if ((b & 1) == 1) { res = matrixMul(res, a); } a = matrixMul(a, a); b >>= 1; } return res; } // 矩阵加法 public static int[][] matrixAdd(int[][] a, int[][] b) { int[][] c = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { c[i][j] = (a[i][j] + b[i][j]) % m; } } return c; } // 输出矩阵 public static void printMatrix(int[][] a) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { System.out.print(a[i][j] + " "); } System.out.println(); } } } ``` 解释: 1. 首先读入输入的n、k、m和矩阵A,同时初始单位矩阵E。 2. 然后调用matrixPow函数求出A的k次幂矩阵res。 3. 最后将res和E相加得到结果ans,并输出。 4. matrixMul函数实现矩阵乘法,matrixPow函数实现矩阵快速幂,matrixAdd函数实现矩阵加法,printMatrix函数实现输出矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值