分布式训练 — 理论基础

起初为调用大规模的模型训练,单卡GPU是不够使用的,需要借用服务器的多GPU使用。就会涉及到单机多卡,多机多卡的使用。在这里记录一下使用的方式和踩过的一些坑。文中若有不足,请多多指正。

由于分布式的内容较多,笔者准备分几篇来讲一次下深度学习的分布式训练,深度学习的框架使用的是Pytorch框架。

----1.分布式训练的理论基础

----2.GPU训练

----3.单机多卡的使用 DP,DDP

----4.多机多卡的使用 DDP

分布式训练的需求和重要性不需要多说,最近新提出的预训练模型,普通的16G的显存已经不足以支撑深度学习模型训练的要求了,这时候就需要用到分布式训练来提高效率。

总的来说,分布式训练分为这几类:

按照并行方式来分:模型并行 vs 数据并行
按照更新方式来分:同步更新 vs 异步更新
按照算法来分:Parameter Server算法 vs AllReduce算法

模型并行VS数据并行

假设我们有n张GPU:

  1. 模型并行:不同的GPU输入相同的数据,运行模型的不同部分,比如多层网络的不同层;
  2. 数据并行:不同的GPU输入不同的数据,运行相同的完整的模型。

在这里插入图片描述
当模型非常大,一张GPU已经存不下的时候,可以使用模型并行,把模型的不同部分交给不同的机器负责,但是这样会带来很大的通信开销,而且模型并行各个部分存在一定的依赖,规模伸缩性差。因此,通常一张可以放下一个模型的时候,会采用数据并行的方式,各部分独立,伸缩性好。

同步更新VS异步更新

对于数据并行来说,由于每个GPU负责一部分数据,那就涉及到如果更新参数的问题&#

  • 9
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
学习TensorFlow后,我获得了以下几方面的收获: 1. 深入理解深度学习原理:TensorFlow的学习使我更深入地理解了深度学习的原理和概念。我学会了如何构建和训练神经网络模型,以及如何使用反向传播算法进行参数优化。 2. 掌握模型构建与训练:通过TensorFlow的学习,我学会了使用该框架来构建和训练各种类型的深度学习模型,如卷积神经网络、循环神经网络等。我了解了如何选择合适的网络结构和超参数,并通过实践提升了模型的性能。 3. 熟悉TensorFlow工具和API:TensorFlow提供了丰富的工具和API,如TensorBoard、tf.data.Dataset等,用于调试、可视化和数据处理。通过学习TensorFlow,我熟悉了这些工具的使用方法,能够更加高效地进行模型开发和调试。 4. 理解分布式计算:TensorFlow支持分布式计算,可以在多个设备或机器上并行训练模型。我学到了如何配置和管理分布式训练环境,以及如何通过数据并行或模型并行来加速训练过程。 5. 实践项目经验:通过实践TensorFlow,我参与了各种深度学习项目,如图像分类、目标检测、文本生成等。这些项目锻炼了我的实际问题解决能力,让我了解了深度学习在各个领域的应用。 总的来说,TensorFlow的学习使我拥有了深度学习理论知识和实践经验。我能够使用TensorFlow构建和训练各种深度学习模型,并且对于模型的调试和优化也有了更深入的了解。这些收获不仅提升了我的技能水平,也为我未来在深度学习领域的发展奠定了坚实的基础

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值