苹果
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。
-
输入
- 有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。 输出
- 对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。 样例输入
-
3 3 1 1 2 1 3 1 0 0
样例输出
-
2
#include<iostream>
#include<algorithm>
using namespace std;
struct stu{
int a,b;
}arr[1010];
int dp[1010][1010];//状态
int main()
{
int n,m;
while(cin>>n>>m)
{
if(n==0&&m==0)
break;
else
{
for(int i=1;i<=n;i++)
cin>>arr[i].a>>arr[i].b;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
dp[i][j]=max(dp[i-1][j],dp[i-1][j-arr[i].a]+arr[i].b);
/*前i件物品的最大承重量为j时所取得的最大价值=
(前i-1件物品的承重量为j时所取得的最大价值)
与(前i-1件物品的最大承重量为j减去第i件物品的
重量的最大价值加上第i件物品的价值)作比较的值的大的一个*/
}
cout<<dp[n][m]<<endl;
}
}
}
OJ平台最优程序:
#include <stdio.h>
#include <string.h>
int result[1005];
int main()
{
int T;
int N,V;
int i,j;
while(scanf("%d %d",&N,&V)&&(N+V))
{
int weight[1001],value[1001];
for (i=1;i<=N;i++)
{
scanf("%d",&weight[i]);
scanf("%d",&value[i]);
}
memset(result,0,sizeof(result));
for (i=1;i<=N;i++)
for(j=V;j>=weight[i];j--)
if (result[j-weight[i]]+value[i]>result[j])
result[j] = result[j-weight[i]]+value[i];
printf("%d\n",result[V]);
}
return 0;
}
详解博客:点击打开链接
NYOJ:311
完全背包
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO
-
输入
-
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
- 对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO) 样例输入
-
2 1 5 2 2 2 5 2 2 5 1
样例输出
-
NO 1
-
第一行: N 表示有多少组测试数据(N<7)。
#include<stdio.h>
#include<string.h>
#define max(a,b) (a)>(b)?(a):(b)
int main()
{
int n,m,v,i,j,d[50005],a,b;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&m,&v);
memset(d,-100,sizeof(d));d[0]=0;
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
for(j=a;j<=v;j++)
d[j]=max(d[j-a]+b,d[j]);
}
if(d[v]<0) printf("NO\n");
else printf("%d\n",d[v]);
}
return 0;
}