NYOJ289苹果背包系列

这篇博客主要介绍了NYOJ289题目的苹果背包问题,探讨了如何在OJ平台上实现最优解。通过详细解析311题,解释了完全背包的解题思路和算法实现。
摘要由CSDN通过智能技术生成


苹果

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述

ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。


输入
有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。
输出
对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。
样例输入
3 3
1 1
2 1
3 1
0 0
样例输出
2
#include<iostream>
#include<algorithm>
using namespace std;
struct stu{
	int a,b;
}arr[1010];
int dp[1010][1010];//状态
int main()
{
	int n,m;
	while(cin>>n>>m)
	{
		if(n==0&&m==0)
		break;
		else
		{
			for(int i=1;i<=n;i++)
			cin>>arr[i].a>>arr[i].b;
			for(int i=1;i<=n;i++)
			for(int j=1;j<=m;j++)
			dp[i][j]=max(dp[i-1][j],dp[i-1][j-arr[i].a]+arr[i].b);
			/*前i件物品的最大承重量为j时所取得的最大价值=
			(前i-1件物品的承重量为j时所取得的最大价值)
			与(前i-1件物品的最大承重量为j减去第i件物品的
			重量的最大价值加上第i件物品的价值)作比较的值的大的一个*/
            }
			cout<<dp[n][m]<<endl;
		}
		
	}
}

OJ平台最优程序:

 
#include <stdio.h>
#include <string.h>

int result[1005];

int main()
{
	int T;
	int N,V;
	int i,j;

	while(scanf("%d %d",&N,&V)&&(N+V))
	{
		int weight[1001],value[1001];
		
		for (i=1;i<=N;i++)
		{
			scanf("%d",&weight[i]);
			scanf("%d",&value[i]);
		}		
		
		memset(result,0,sizeof(result));
		for (i=1;i<=N;i++)
			for(j=V;j>=weight[i];j--)
				if (result[j-weight[i]]+value[i]>result[j])
					result[j] = result[j-weight[i]]+value[i];

		printf("%d\n",result[V]);
	}

	return 0;
}        

详解博客:点击打开链接

NYOJ:311

完全背包

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 4
描述

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

输入
第一行: N 表示有多少组测试数据(N<7)。 
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)
样例输入
2
1 5
2 2
2 5
2 2
5 1
样例输出
NO
1
 
#include<stdio.h>
#include<string.h>
#define max(a,b) (a)>(b)?(a):(b)
int main()
{
	int n,m,v,i,j,d[50005],a,b;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d%d",&m,&v);
		memset(d,-100,sizeof(d));d[0]=0;
		for(i=0;i<m;i++)
		{
			scanf("%d%d",&a,&b);
			for(j=a;j<=v;j++)
				d[j]=max(d[j-a]+b,d[j]);
		}
		if(d[v]<0) printf("NO\n");
		else printf("%d\n",d[v]);
	}
	return 0;
}        


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值