浙大数据结构 树的同构

03-树1 树的同构 (25 分)

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

 

 

图1

图2

现给定两棵树,请你判断它们是否是同构的。

 

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

 

#include <iostream>
using namespace std;
#define Tree int
#define  Null -1

class TreeNode{
public:
    char element;
    Tree left;
    Tree right;
};
TreeNode t1[10],t2[10];

Tree BuildTree(TreeNode *T){
    int N,i;
    cin>>N;
    int check[N];
    Tree Root;
    if (N){
        char ele;
        char l,r;
        for( i=0;i<N;i++) check[i]=0;
        for( i=0;i<N;i++){
            cin>>ele>>l>>r;
            T[i].element=ele;
            if(l!='-'){
                T[i].left=l-'0';
                check[T[i].left]=1;
            }
            else T[i].left=Null;
            if(r!='-'){
                T[i].right=r-'0';
                check[T[i].right]=1;
            }
            else T[i].right=Null;

        }
        int count=0;
        for( i=0;i<N;i++){
            if(!check[i]){
                count=1;
                break;

            }

        }
        Root=i;

    }
    if(!N) Root=Null;
    return Root;
}

int Isomorphic(Tree r1,Tree r2){                                                    //体会递归
    if((r1==Null)&&(r2==Null))  return 1;                                //根都空
    if(((r1==Null)&&(r2!=Null))||((r1!=Null)&&(r2==Null))) return 0;    //根一空一不空
    if(t1[r1].element!=t2[r2].element)  return 0;                      //节点值不同
    if ((t1[r1].left==Null)&&(t2[r2].left==Null)) return Isomorphic(t1[r1].right,t2[r2].right);                          // 1   如果左边都为空,只需要判断右边是否同构
    if(((t1[r1].left!=Null)&&(t2[r2].left!=Null))&&((t1[t1[r1].left].element)==(t2[t2[r2].left].element)))               //2     如果左子树都不为空且是相同节点,则判断左右子树是否同构
    return (Isomorphic(t1[r1].left,t2[r2].left)&&Isomorphic(t1[r1].right,t2[r2].right));
    else                                                                                                                 //3    如果左子树一空一不空,则判断1的右子树和2的左子树是否同构。如果左右子树根节点值不同,则判断互相是否同构
        return (Isomorphic(t1[r1].left,t2[r2].right)&&Isomorphic(t1[r1].right,t2[r2].left));
}

int main() {

    Tree r1,r2;                          //建树1
    r1=BuildTree(t1);  r2=BuildTree(t2);//建树2
    if(Isomorphic(r1,r2))    cout<<"Yes"<<endl;        //判断是否同构输出
    else cout<<"No"<<endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值