逻辑回归(Logistic+Regression)

机器学习算法完整版见fenghaootong-github

逻辑回归(Logistic Regression)

Regression问题的常规步骤为:

  • 寻找h函数(即hypothesis);
  • 构造J函数(损失函数);
  • 想办法使得J函数最小并求得回归参数(θ)

构造预测函数h

函数形式为:

hθ(x)=g(θTx)=11+eθTx h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x

函数 hθ(x) h θ ( x ) 的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

P(y=1|x;θ)=hθ(x) P ( y = 1 | x ; θ ) = h θ ( x )
P(y=0|x;θ)=1hθ(x) P ( y = 0 | x ; θ ) = 1 − h θ ( x )

构造损失函数J

将上面二式综合起来

P(y|x;θ)=(hθ(x))y(1hθ(x))1y P ( y | x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y

取似然函数为:

L(θ)=Πmi=1P(yi|xi;θ)=Πmi=1(hθ(xi))yi(1hθ(xi))1yi L ( θ ) = Π i = 1 m P ( y i | x i ; θ ) = Π i = 1 m ( h θ ( x i ) ) y i ( 1 − h θ ( x i ) ) 1 − y i

对数似然函数为:

l(θ)=logL(θ)=mi=1(yihθ(xi)+(1yi)(1hθ(xi))) l ( θ ) = l o g L ( θ ) = ∑ i = 1 m ( y i h θ ( x i ) + ( 1 − y i ) ( 1 − h θ ( x i ) ) )

最大似然估计就是求使 l(θ) l ( θ ) 取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。

J(θ)=1ml(θ) J ( θ ) = − 1 m l ( θ )

因为乘了一个负的系数-1/m,所以取 J(θ) J ( θ ) 最小值时的θ为要求的最佳参数。

梯度下降法求的最小值

θ θ 更新过程:

θj:=θjα1mmi=1(hθ(xi)yi)xji θ j := θ j − α 1 m ∑ i = 1 m ( h θ ( x i ) − y i ) x i j

逻辑回归(Logistic Regression)经典实例

逻辑回归(Logistic Regression)经典实例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值