UB内存池

什么是BU呢?其实就是单元块。

它的作用就是为了实现对频繁申请内存的高效的管理,才实现的一种内存使用的方法,可以很大程度的减少内存碎片,同时也能缩减申请时间,实时的任务使用这种方法相当的高效。

在实际的开发中,有时候我们会频繁的申请大小一定的内存,比如,64,128,256,512,1024,8192,那么我们就为这几种不同长度的内存分配UB块,根据实际需要,不同长度的分配不同数目的UB块,聚合在一起建立一个BU内存池。比如长度为1024的分配100个UB块,倘若我们需要申请内存大小是1024的,直接去UB内存池里面获取内存块,使用就可以了。

实现的方法:

就是使用一个双向的链表。每种长度使用一个双向链表freelist进行管理,如果是free的,那么挂在freelist上。如果已经分配出去了,从freelist中删除。用户试图分配,只需要将freelist的next摘下来,就可以用了。

这种方法高效而且灵活,对内存的浪费也是有限的。



参考 http://blog.chinaunix.net/uid-24774106-id-3419831.html

<think>好的,我需要回答用户关于Matlab优化算法实现的问题。首先,用户提到了他们参考的站内引用,里面提到了提高目标函数效率的策略,比如向量化计算、内联函数、预计算、并行计算和内存管理。我需要结合这些信息,给出具体的实现示例和教程建议。 首先,我应该介绍Matlab中常用的优化算法,比如fmincon、遗传算法和粒子群优化。用户可能对这些算法的基本用法和示例感兴趣。接下来,我需要确保回答符合系统级指令,比如使用正确的中文,行内数学公式用$...$,独立公式用$$...$$,并且生成相关问题。 在写代码示例时,要使用正确的语法,比如函数定义、选项设置等。例如,使用fmincon时,需要定义目标函数、约束条件,并设置选项。对于遗传算法,可能需要使用Global Optimization Toolbox中的ga函数,而粒子群优化则用particleswarm。 同时,要引用用户提供的参考内容,特别是在提到优化策略时,比如向量化计算和并行计算,可以引用[^1]。还要注意在段落末尾自然添加引用标识。 接下来,我需要生成相关问题,这些问题应该与Matlab优化算法相关,可能涉及不同算法的选择、约束处理、性能优化、工具箱比较以及与其他语言的对比。这些问题要覆盖用户可能进一步询问的方向。 最后,检查整个回答是否符合格式要求,没有使用markdown,数学公式正确,代码块用三个反引号包裹,并且结构清晰,分步骤说明。确保没有遗漏用户提到的任何关键点,比如示例代码、教程资源链接和优化策略的应用。</think>在MATLAB中实现优化算法时,可结合其内置函数和工具箱高效解决问题。以下是常见优化算法的实现方法及示例: ### 一、基础优化算法实现 1. **非线性规划(fmincon)** ```matlab fun = @(x) x(1)^2 + x(2)^2; % 目标函数$f(x)=x_1^2+x_2^2$ A = [1,1]; b = 1; % 线性约束$A·x \leq b$ x0 = [0.5,0.5]; % 初始点 options = optimoptions('fmincon','Display','iter'); [x,fval] = fmincon(fun,x0,A,b,[],[],[],[],[],options); ``` 2. **遗传算法(Global Optimization Toolbox)** ```matlab FitnessFcn = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2; % Rosenbrock函数 nvars = 2; [x,fval] = ga(FitnessFcn,nvars); % 默认参数调用 ``` ### 二、性能优化技巧 - **向量化计算示例**:将$f(x)=\sum_{i=1}^{n} x_i^2$改写为`sum(x.^2)`而非循环计算 - **并行计算加速**: ```matlab options = optimoptions('particleswarm','UseParallel',true); parpool; % 启动并行 [x,fval] = particleswarm(@objfun,nvars,lb,ub,options); ``` ### 三、实用教程资源 1. [MathWorks官方优化教程](https://www.mathworks.com/help/optim/) 2. [MATLAB数值计算经典案例](https://www.mathworks.com/matlabcentral/fileexchange/) 3. 教材《MATLAB优化算法案例分析与应用》 $$ \text{典型优化问题模型:} \quad \min_x f(x) \quad \text{s.t.} \quad g_i(x) \leq 0,\ i=1,...,m $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值