Deep Learning
love_image_xie
这个作者很懒,什么都没留下…
展开
-
卷积去噪自编码器项目实现tensorflow
import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data', validation_size=...原创 2018-12-02 15:19:46 · 1186 阅读 · 0 评论 -
GAN及DCGAN的tensorflow实践
原理: 生成式对抗网络(generative adversarial network, GAN)是生成模型中的一种,可以自动学习原始图像的数据分布,而不需要提前假设原始数据属于哪种分布,只是不知道参数。GAN基于博弈论场景,由生成器网络和判别器网络构成,生成器网络用来从随机噪声数据中生成近似真实数据分布的样本,供判别器网络使用;判别器网络对真实数据和由生成器网络得到的假数据进行判...原创 2018-12-04 16:30:08 · 502 阅读 · 0 评论 -
用DCGAN训练自己的数据集
第一步:读入数据import tensorflow as tfimport numpy as npimport osimport matplotlib.pyplot as pltimport pdbdef get_files(file_dir): img=[] label=[] for file in os.listdir(file_dir): ...原创 2018-12-05 20:39:21 · 9488 阅读 · 2 评论 -
原始GAN存在的问题
一、判别器非常强,导致loss都是0,不能引导生成器更新,所以可能生成出来的图像和真实图像差别很大,而loss仍然是0原因1、我们是近似采样,并不能对原始数据全部采样loss如下: 说明从两个分布采样的数据没有重合区域,但是其实两组数据之间有重合,只是判别器太强了,可以找到一条线将两组数据分开,如图所示。图上的点是两个分布的采样数据,因为我们并不知道分布,只能对分...原创 2018-12-07 14:56:17 · 3448 阅读 · 1 评论 -
WGAN原理
第一部分:原始GAN问题详细讨论第二部分:WGAN原理第一部分:对于判别器,GAN最小化如下损失函数:其中,Pr表示真实样本分布,Pg表示生成器产生的样本分布。对于生成器,有两个损失函数: 第一种损失函数存在的问题是当判别器最优时,生成器损失函数相当于最小化JS散度,即判别器越优,最小化生成器的loss就越接近于最小化Pr和Pg之间的JS散度。但是问题...转载 2018-12-15 17:43:31 · 3317 阅读 · 0 评论 -
SeqGAN论文翻译与原理理解 =>SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
摘要:GAN采用判别模型引导生成模型的训练在连续型数据上已经产生了很好的效果,但是有两个limitations,第一,当目标是离散数据时,如文本,不可能文本+1产生梯度信息引导生成器的生成;第二,判别模型只能对完整的序列产生判别信息,对于非完整序列,它并不知道当前的判别结果和未来完整序列的判别结果是否相同。SeqGAN可以解决这两个问题。采用强化学习的reward思想,实行梯度策略更...原创 2018-12-21 15:17:23 · 2459 阅读 · 0 评论 -
SeqGAN代码解析
#注释全部写在了代码中哦,注意仔细看#主程序,sequence_gan.pyimport numpy as npimport tensorflow as tfimport randomfrom dataloader import Gen_Data_loader, Dis_dataloaderfrom generator import Generatorfrom discrimina...原创 2018-12-21 16:51:44 · 4996 阅读 · 7 评论