- Markdown 1 - 图文音视频等
https://blog.csdn.net/lovechris00/article/details/126065244 - Markdown 3 - 流程图表
https://blog.csdn.net/lovechris00/article/details/126065946
文章目录
关于 Latex
本文基于 LATEXMathematicalSymbols.pdf
文档;文档源地址:
https://www.caam.rice.edu/~heinken/latex/symbols.pdf
- CSDN 支持使用 katex:
https://katex.org/ - 好用的 latex 编辑器
https://www.latexlive.com/home#
关于 TEX、LATEX、KATEX
可以这么说,TEX是一个电子排版系统,它的出现给印刷出版业带来了一场革命。
但TEX对于使用者的要求比较高,所以出现了LATEX使得使用者可以更方便的利用TEX的强大功能。
KATEX则是一种LATEX的一个快速web数学公式渲染器,使得LATEX的公式可以快速渲染出来。
本文主要介绍 Latex,在文档的基础上增加示例,方便理解。
一、希腊字符
Δ \Delta Δ | $\Delta$ |
二、数据结构
a b c x y z \frac{abc}{xyz} xyzabc | $\frac{abc}{xyz}$ |
三、分隔符
示例:
⇑ \Uparrow ⇑ | $\Uparrow$ |
四、可变尺寸符号
示例:
∑ n = 1 N \sum_{n=1}^N ∑n=1N | $\sum_{n=1}^N$ | ∑ n = 1 N a n \sum_{n=1}^Na_n ∑n=1Nan | $\sum_{n=1}^Na_n$ |
p = ∑ n = 1 N a n p = \sum\limits_{n=1}^Na_n p=n=1∑Nan | $p = \sum\limits_{n=1}^Na_n$ |
五、标准函数名
示例:
cos \cos cos π \pi π | $\cos$ $\pi$ |
六、二进制运算/关系符号
七、箭头符号
八、其他符号
九、数学模式重音
十、数组环境
$$f(x) = \left\{ \begin{array}{rcl} 1, x ≥ 0 \\ 0, x < 0 \end{array}\right. $$ | f ( x ) = { 1 , x ≥ 0 0 , x < 0 f(x) = \left\{ \begin{array}{rcl} 1, x ≥ 0 \\ 0, x < 0 \\ \end{array}\right. f(x)={1,x≥00,x<0 |
十一、其他风格
十二、字体尺寸
示例:
x − u σ \huge \frac{x-u}{\sigma} σx−u | $\huge \frac{x-u}{\sigma}$ | x − u σ \small \frac{x-u}{\sigma} σx−u | $\small \frac{x-u}{\sigma}$ |
十三、文字模式:重音和符号
十四、其他(个人补充)
$X^2$ | X 2 X^2 X2 | $X^{(a+2)}$ | X ( a + 2 ) X^{(a+2)} X(a+2) |
$X^{(a+2)}_{b}$ | X b ( a + 2 ) X^{(a+2)}_{b} Xb(a+2) | ||
H<sub>2</sub>O | H2O | CO<sub>2</sub> | CO2 |
<sup>TM</sup> | TM |
矩阵
1、普通矩阵,不带括号的
$$
\begin{matrix}
a & b & c & d & e\\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t
\end{matrix}
$$
a b c d e f g h i j k l m n o p q r s t \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} afkpbglqchmrdinsejot
2、带中括号的矩阵 []
$$
\left[
\begin{matrix}
a & b & c & d & e\\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t
\end{matrix}
\right]
$$
[ a b c d e f g h i j k l m n o p q r s t ] \left[ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right] ⎣ ⎡afkpbglqchmrdinsejot⎦ ⎤
3、带大括号的矩阵 {}
$$
\left\{
\begin{matrix}
a & b & c & d & e\\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t
\end{matrix}
\right\}
$$
{ a b c d e f g h i j k l m n o p q r s t } \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\} ⎩ ⎨ ⎧afkpbglqchmrdinsejot⎭ ⎬ ⎫
4、矩阵前加个参数
$$
A=\left\{
\begin{matrix}
a & b & c & d & e\\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t
\end{matrix}
\right\}
$$
A = { a b c d e f g h i j k l m n o p q r s t } A= \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\} A=⎩ ⎨ ⎧afkpbglqchmrdinsejot⎭ ⎬ ⎫
5、矩阵中间有省略号
\cdots
为水平方向的省略号\vdots
为竖直方向的省略号\ddots
为斜线方向的省略号
$$A=
\left\{
\begin{matrix}
a & b & \cdots & e\\
f & g & \cdots & j \\
\vdots & \vdots & \ddots & \vdots \\
p & q & \cdots & t
\end{matrix}
\right\}
$$
A = { a b ⋯ e f g ⋯ j ⋮ ⋮ ⋱ ⋮ p q ⋯ t } A= \left\{ \begin{matrix} a & b & \cdots & e\\ f & g & \cdots & j \\ \vdots & \vdots & \ddots & \vdots \\ p & q & \cdots & t \end{matrix} \right\} A=⎩ ⎨ ⎧af⋮pbg⋮q⋯⋯⋱⋯ej⋮t⎭ ⎬ ⎫
6、矩阵中间加根横线
//array必须为array
//{cccc|c}中的c表示矩阵元素,可以控制|的位置
$$
A=\left\{
\begin{array}{cccc|c}
a & b & c & d & e\\
f & g & h & i & j \\
k & l & m & n & o \\
p & q & r & s & t
\end{array}
\right\}
$$
A = { a b c d e f g h i j k l m n o p q r s t } A= \left\{ \begin{array}{cccc|c} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{array} \right\} A=⎩ ⎨ ⎧afkpbglqchmrdinsejot⎭ ⎬ ⎫