Markdown 2 - Latex



关于 Latex

本文基于 LATEXMathematicalSymbols.pdf 文档;文档源地址:
https://www.caam.rice.edu/~heinken/latex/symbols.pdf



关于 TEX、LATEX、KATEX

可以这么说,TEX是一个电子排版系统,它的出现给印刷出版业带来了一场革命。
但TEX对于使用者的要求比较高,所以出现了LATEX使得使用者可以更方便的利用TEX的强大功能。
KATEX则是一种LATEX的一个快速web数学公式渲染器,使得LATEX的公式可以快速渲染出来。


本文主要介绍 Latex,在文档的基础上增加示例,方便理解。


一、希腊字符

在这里插入图片描述


Δ \Delta Δ$\Delta$

二、数据结构

在这里插入图片描述


a b c x y z \frac{abc}{xyz} xyzabc$\frac{abc}{xyz}$

三、分隔符

在这里插入图片描述


示例:

⇑ \Uparrow $\Uparrow$

四、可变尺寸符号

在这里插入图片描述


示例:

∑ n = 1 N \sum_{n=1}^N n=1N$\sum_{n=1}^N$ ∑ n = 1 N a n \sum_{n=1}^Na_n n=1Nan$\sum_{n=1}^Na_n$
p = ∑ n = 1 N a n p = \sum\limits_{n=1}^Na_n p=n=1Nan$p = \sum\limits_{n=1}^Na_n$

五、标准函数名

在这里插入图片描述


示例:

cos ⁡ \cos cos π \pi π$\cos$ $\pi$

六、二进制运算/关系符号

在这里插入图片描述
在这里插入图片描述


七、箭头符号

在这里插入图片描述


八、其他符号


九、数学模式重音

在这里插入图片描述


十、数组环境

在这里插入图片描述


$$f(x) = \left\{ \begin{array}{rcl} 1, x ≥ 0 \\ 0, x < 0 \end{array}\right. $$ f ( x ) = { 1 , x ≥ 0 0 , x < 0 f(x) = \left\{ \begin{array}{rcl} 1, x ≥ 0 \\ 0, x < 0 \\ \end{array}\right. f(x)={1,x00,x<0

十一、其他风格

在这里插入图片描述


十二、字体尺寸


示例:

x − u σ \huge \frac{x-u}{\sigma} σxu$\huge \frac{x-u}{\sigma}$ x − u σ \small \frac{x-u}{\sigma} σxu$\small \frac{x-u}{\sigma}$

十三、文字模式:重音和符号

在这里插入图片描述


十四、其他(个人补充)

$X^2$ X 2 X^2 X2$X^{(a+2)}$ X ( a + 2 ) X^{(a+2)} X(a+2)
$X^{(a+2)}_{b}$ X b ( a + 2 ) X^{(a+2)}_{b} Xb(a+2)
H<sub>2</sub>OH2OCO<sub>2</sub>CO2
<sup>TM</sup>TM

矩阵

1、普通矩阵,不带括号的

$$
 \begin{matrix}
   a & b & c & d & e\\
   f & g & h & i & j \\
   k & l & m & n & o \\
   p & q & r & s & t
  \end{matrix} 
$$

a b c d e f g h i j k l m n o p q r s t \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} afkpbglqchmrdinsejot


2、带中括号的矩阵 []

$$
\left[
 \begin{matrix}
   a & b & c & d & e\\
   f & g & h & i & j \\
   k & l & m & n & o \\
   p & q & r & s & t
  \end{matrix} 
\right]
$$

[ a b c d e f g h i j k l m n o p q r s t ] \left[ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right] afkpbglqchmrdinsejot


3、带大括号的矩阵 {}

$$
\left\{
 \begin{matrix}
   a & b & c & d & e\\
   f & g & h & i & j \\
   k & l & m & n & o \\
   p & q & r & s & t
  \end{matrix} 
\right\}
$$

{ a b c d e f g h i j k l m n o p q r s t } \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\} afkpbglqchmrdinsejot


4、矩阵前加个参数

$$
A=\left\{
 \begin{matrix}
   a & b & c & d & e\\
   f & g & h & i & j \\
   k & l & m & n & o \\
   p & q & r & s & t
  \end{matrix} 
\right\}
$$

A = { a b c d e f g h i j k l m n o p q r s t } A= \left\{ \begin{matrix} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{matrix} \right\} A= afkpbglqchmrdinsejot


5、矩阵中间有省略号

  • \cdots 为水平方向的省略号
  • \vdots 为竖直方向的省略号
  • \ddots 为斜线方向的省略号
$$A=
\left\{
 \begin{matrix}
   a & b & \cdots & e\\
   f & g & \cdots & j \\
   \vdots & \vdots & \ddots & \vdots \\
   p & q & \cdots & t
  \end{matrix} 
\right\}
$$

A = { a b ⋯ e f g ⋯ j ⋮ ⋮ ⋱ ⋮ p q ⋯ t } A= \left\{ \begin{matrix} a & b & \cdots & e\\ f & g & \cdots & j \\ \vdots & \vdots & \ddots & \vdots \\ p & q & \cdots & t \end{matrix} \right\} A= afpbgqejt


6、矩阵中间加根横线

//array必须为array
//{cccc|c}中的c表示矩阵元素,可以控制|的位置
$$
A=\left\{
 \begin{array}{cccc|c}
     a & b & c & d & e\\
     f & g & h & i & j \\
     k & l & m & n & o \\
     p & q & r & s & t
  \end{array} 
\right\}
$$

A = { a b c d e f g h i j k l m n o p q r s t } A= \left\{ \begin{array}{cccc|c} a & b & c & d & e\\ f & g & h & i & j \\ k & l & m & n & o \\ p & q & r & s & t \end{array} \right\} A= afkpbglqchmrdinsejot


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI工程仔

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值