文章目录
DeepSeek 基本信息
2025年1月20日,杭州深度求索人工智能基础技术研究有限公司发布高性能AI推理模型DeepSeek-R1,对标OpenAI的o1正式版。
- DeepSeek官网:https://www.deepseek.com/
- Chat : https://chat.deepseek.com/
- API 文档:https://api-docs.deepseek.com/zh-cn/
- HuggingFace : https://huggingface.co/deepseek-ai
- Github : https://github.com/deepseek-ai
- 论文 : arxiv - DeepSeek-AI
- DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
https://arxiv.org/abs/2501.12948 - DeepSeek-V3 Technical Report
https://arxiv.org/abs/2412.19437
- DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
- DeepSeek-R1新闻发布:https://api-docs.deepseek.com/zh-cn/news/news250120
小白操作手册
资料
链接: https://pan.baidu.com/s/1RbPz_5tdNUx4cuR_DWUnTA?pwd=2025
提取码: 2025
上述链接内容如下:
- 1000个DeepSeek神级提示词,让你轻松驾驭AI【赶紧收藏】.docx
- 10天精通 DeepSeek 实操手册.pdf
- 120个AI润色指令,让AI内容更加生动!.doc
- 27+超实用 kimi AI 常用指令(内容创作+工作场景).doc
- 3个DeepSeek隐藏玩法,99%的人都不知道!.docx
- 50个常用的DeepSeek提示词.doc
- AI赋能课堂观察与教师自主专业发展-标准版v2.0(麦萌科技).pdf
- Deep seek 看法.pdf
- DeepSeek 15天指导手册-从入门到精通.pdf
- DeepSeek 15天指导⼿册?从⼊⻔到精通.pdf
- DeepSeek 15天指导手册——从入门到精通 (2).pdf
- DeepSeek 个万能公式.pdf
- DeepSeek 万能提问模板.pdf
- DeepSeek 实用万能提问模板.pdf
- DeepSeek 提问攻略、使用实例和心得.pdf
- DeepSeek-30个喂饭指令.pdf
- DeepSeek-R1使用指南(简版).pdf
- DeepSeek15天入门手册.pdf
- DeepSeek图解10页PDF.pdf
- DeepSeek本地部署 再也不怕服务器崩了!.pdf
- DeepSeek使用攻略.pdf
- DeepSeek案例大全.pdf
- DeepSeek隐藏玩法,99%的人都不知道!.pdf
- DeepSeek指令公式大全.pdf
- DeepSeek小白使用指南,99%+的人都不知道的使用技巧(建议收藏).docx
- DeepSeek指导手册从入门到精通.pdf
- DeepSeek神级提示词,让你轻松驾驭AI.pdf
- DeepSeek零基础到精通手册(保姆级教程).pdf
- DeepSeek最强使用攻略,放弃复杂提示词,直接提问效果反而更好?.docx
- Deepseek 应该怎样提问.pdf
- Deepseek 高效使用指南.pdf
- Deepseek+高效使用指南.docx
- Deepseek不好用,是你真的不会用啊!.docx
- Deepseek不好用,是你真的不会用啊!.pdf
- S1模型论文(李飞飞50美元蒸馏).pdf
- deepseek 应该怎样提问.docx
- deepseek万能公式:4步提问法.pdf
- 《7天精通DeepSeek实操手册》.pdf
- 用DeepSeek搭建个人知识库.doc
- 当我用 DeepSeek 学习、工作和玩,惊艳!含提问攻略、使用实例和心得.docx
- 让你的DeepSeek能力翻倍的使用指南.docx
- 让你的DeepSeek能力翻倍的使用指南.pdf
- 最有用的 DeepSeek 使用指南 80% 的人都不知道的使用技巧.pdf
- 清华大学DeepSeek从入门到精通(20250204).pdf
- 深度对比deepseek、豆包和kimi三款国产主流AI,我发现了一个恐怖的真相.doc
- 零基础使用DeepSeek高效提问技巧.docx
- 零基础使用DeepSeek高效提问技巧.pdf
- 如何正确使用deepseek?99%的人都错了.docx
- 如何正确使用deepseek?99%的人都错了.pdf
- 摩根斯坦利报告—DeepSeek对于科技和更广义经济的含义是什么?.pdf
- 【官网提示库】探索 DeepSeek 提示词样例,挖掘更多可能.docx
- 高质量大模型基础设施研究报告(2024年).pdf
第三方平台支持
- 硅基流动:https://siliconflow.cn/zh-cn/models
- 🔥硅流免费使用deepseek-r1多个蒸馏模型
https://mp.weixin.qq.com/s/VQ_mnUevck_5bf2VM3F-mQ
- 🔥硅流免费使用deepseek-r1多个蒸馏模型
- 阿里云百炼:https://api.together.ai/playground/chat/deepseek-ai/DeepSeek-R1
- 英伟达NIM:https://build.nvidia.com/deepseek-ai/deepseek-r1
- 字节跳动火山引擎:https://console.volcengine.com/ark/region:ark+cn-beijing/experience
- 百度云千帆:https://console.bce.baidu.com/qianfan/modelcenter/model/
- Groq:https://groq.com/
- Fireworks:https://fireworks.ai/models/fireworks/deepseek-r1
- Chutes:https://chutes.ai
- Github:https://github.com/marketplace/models/azureml-deepseek/DeepSeek-R1/playground
- POE:https://poe.com/DeepSeek-R1
- Cursor:<https://cursor.sh/Monica:https://monica.im/
- Lambda:https://lambdalabs.com/
- Cerebras:https://cerebras.ai
- Perplexity:https://www.perplexity.ai
- 超算互联网:https://chat.scnet.cn/
- CSGHub :https://opencsg.com/
- 秘塔搜索:https://metaso.cn
- 360纳米AI搜索:https://www.n.cn
开发者
模型说明
目前发布了两个版本:DeepSeek R1-Zero 和 DeepSeek R1。
其中,DeepSeek-R1-Zero 是一个完全基于强化学习(RL)训练而无需监督微调(SFT)的模型。
通过强化学习(RL),DeepSeek-R1-Zero 自然地展现出许多强大且有趣的推理行为。
然而,它也遇到了一些挑战,如可读性差和语言混合问题。为了解决这些问题并进一步提高推理性能,引入了DeepSeek-R1,它基于 DeepSeek-V3 Base 作为基础模型,并结合强化学习技术,在无需监督数据的情况下显著提升推理能力,突破了传统模型的局限性。
通过独创的GRPO 组相对策略优化方法,模型在训练过程中不断自我优化,从而具备强大的逻辑推理和深度上下文理解能力。上述两个版本都是671B 参数。
同时,也针对Qwen和LLama系列模型使用DeepSeek-R1生成的80万条样本(包括详细答案以及完整的推理链条)进行SFT蒸馏(Distill),推出了多款具备强大推理能力的小型模型。
这些蒸馏版本在保留 R1 逻辑推理能力的同时,大幅降低了推理计算成本,使其更加适合个人用户和企业的私有化部署需求。
完整版(671B):需要至少 350GB 显存/内存,适合专业服务器部署
蒸馏版:基于开源模型(如 QWEN 和 LLAMA)微调,参数量从 1.5B 到 70B 不等,适合本地硬件部署。
蒸馏版与完整版的区别
特性 | 蒸馏版 | 完整版 |
---|---|---|
参数量 | 参数量较少(如 1.5B、7B),性能接近完整版但略有下降。 | 参数量较大(如 32B、70B),性能最强。 |
硬件需求 | 显存和内存需求较低,适合低配硬件。 | 显存和内存需求较高,需高端硬件支持。 |
适用场景 | 适合轻量级任务和资源有限的设备。 | 适合高精度任务和专业场景。 |
蒸馏版模型的特点
模型版本 | 参数量 | 特点 |
---|---|---|
deepseek-r1:1.5b | 1.5B | 轻量级模型,适合低配硬件,性能有限但运行速度快 |
deepseek-r1:7b | 7B | 平衡型模型,适合大多数任务,性能较好且硬件需求适中。 |
deepseek-r1:8b | 8B | 略高于 7B 模型,性能稍强,适合需要更高精度的场景。 |
deepseek-r1:14b | 14B | 高性能模型,适合复杂任务(如数学推理、代码生成),硬件需求较高。 |
deepseek-r1:32b | 32B | 专业级模型,性能强大,适合研究和高精度任务,需高端硬件支持。 |
deepseek-r1:70b | 70B | 顶级模型,性能最强,适合大规模计算和高复杂度任务,需专业级硬件支持。 |
DeepSeek-R1的能力
通过 DeepSeek-R1 的输出,蒸馏了 6 个小模型开源给社区,其中 32B 和 70B 模型在多项能力上实现了对标 OpenAI o1-mini 的效果。
本地部署硬件要求
对于大多数个人用户,建议部署4bit量化模型:
- 7B/8B模型:8GB显存
- 14B模型:16GB显存
- 32B模型:22GB显存
- 70B模型:48GB显存
可根据下表配置选择使用自己的模型
模型名称 | 参数量 | 大小 | VRAM (Approx.) | 推荐 Mac 配置 | 推荐 Windows/Linux 配置 |
---|---|---|---|---|---|
deepseek-r1:1.5b | 1.5B | 1.1 GB | ~2 GB | M2/M3 MacBook Air (8GB RAM+) | NVIDIA GTX 1650 4GB / AMD RX 5500 4GB (16GB RAM+) |
deepseek-r1:7b | 7B | 4.7 GB | ~5 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 8GB / AMD RX 6600 8GB (16GB RAM+) |
deepseek-r1:8b | 8B | 4.9 GB | ~6 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 Ti 8GB / AMD RX 6700 10GB (16GB RAM+) |
deepseek-r1:14b | 14B | 9.0 GB | ~10 GB | M2/M3/M4 Pro MacBook Pro (32GB RAM+) | NVIDIA RTX 3080 10GB / AMD RX 6800 16GB (32GB RAM+) |
deepseek-r1:32b | 32B | 20 GB | ~22 GB | M2 Max/Ultra Mac Studio | NVIDIA RTX 3090 24GB / AMD RX 7900 XTX 24GB (64GB RAM+) |
deepseek-r1:70b | 70B | 43 GB | ~45 GB | M2 Ultra Mac Studio | NVIDIA A100 40GB / AMD MI250X 128GB (128GB RAM+) |
deepseek-r1:1.5b-qwen-distill-q4_K_M | 1.5B | 1.1 GB | ~2 GB | M2/M3 MacBook Air (8GB RAM+) | NVIDIA GTX 1650 4GB / AMD RX 5500 4GB (16GB RAM+) |
deepseek-r1:7b-qwen-distill-q4_K_M | 7B | 4.7 GB | ~5 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 8GB / AMD RX 6600 8GB (16GB RAM+) |
deepseek-r1:8b-llama-distill-q4_K_M | 8B | 4.9 GB | ~6 GB | M2/M3/M4 MacBook Pro (16GB RAM+) | NVIDIA RTX 3060 Ti 8GB / AMD RX 6700 10GB (16GB RAM+) |
deepseek-r1:14b-qwen-distill-q4_K_M | 14B | 9.0 GB | ~10 GB | M2/M3/M4 Pro MacBook Pro (32GB RAM+) | NVIDIA RTX 3080 10GB / AMD RX 6800 16GB (32GB RAM+) |
deepseek-r1:32b-qwen-distill-q4_K_M | 32B | 20 GB | ~22 GB | M2 Max/Ultra Mac Studio | NVIDIA RTX 3090 24GB / AMD RX 7900 XTX 24GB (64GB RAM+) |
deepseek-r1:70b-llama-distill-q4_K_M | 70B | 43 GB | ~45 GB | M2 Ultra Mac Studio | NVIDIA A100 40GB / AMD MI250X 128GB (128GB RAM+) |
技术解读
- 吕阿华 : 【LLM技术报告】DeepSeek-V3技术报告(全文)
https://zhuanlan.zhihu.com/p/14890557782 - DeepSeek-R1看知识蒸馏-从知识蒸馏综述论文中解密
https://zhuanlan.zhihu.com/p/22607939988 - 简单聊聊Deepseek V3的FP8训练
https://mp.weixin.qq.com/s/HjQLrq09kuC_2JO3pbd7mw
部署使用微调
- 单卡4090运行deepseek r1 671b
https://mp.weixin.qq.com/s/skr6TD4WJ-maQiaRHBqVWw - Unsloth:运行和微调 DeepSeek-R1
https://unsloth.ai/blog/deepseek-r1 - Train your own R1 reasoning model with Unsloth (GRPO)
https://unsloth.ai/blog/r1-reasoning - DeepSeek-V3 本地部署实践(LMDeploy 高效版)
https://mp.weixin.qq.com/s/MFLL6wvpQ7JZ2a2EuJ92pQ
赋范空间 - DeepSeek R1微调实战
https://kq4b3vgg5b.feishu.cn/wiki/Qx3Kwpr4HiKu7FkfZA0cgYMSnQe
Ollama 运行
ollama deepseek 模型列表: https://ollama.com/search?q=deepseek
如 DeepSeek-R1-Distill-Qwen-1.5B
ollama run deepseek-r1:1.5b
教程:如何使用 Ollama 在本地运行 DeepSeek R1?
https://mp.weixin.qq.com/s/J8aFyNCpLsbWvT3mdgHr_Q
2025-02-15(日)