那些你想要的 Deepseek 资源【最全】


DeepSeek 基本信息

2025年1月20日,杭州深度求索人工智能基础技术研究有限公司发布高性能AI推理模型DeepSeek-R1,对标OpenAI的o1正式版。



小白操作手册

资料

链接: https://pan.baidu.com/s/1RbPz_5tdNUx4cuR_DWUnTA?pwd=2025
提取码: 2025


上述链接内容如下:

  • 1000个DeepSeek神级提示词,让你轻松驾驭AI【赶紧收藏】.docx
  • 10天精通 DeepSeek 实操手册.pdf
  • 120个AI润色指令,让AI内容更加生动!.doc
  • 27+超实用 kimi AI 常用指令(内容创作+工作场景).doc
  • 3个DeepSeek隐藏玩法,99%的人都不知道!.docx
  • 50个常用的DeepSeek提示词.doc
  • AI赋能课堂观察与教师自主专业发展-标准版v2.0(麦萌科技).pdf
  • Deep seek 看法.pdf
  • DeepSeek 15天指导手册-从入门到精通.pdf
  • DeepSeek 15天指导⼿册?从⼊⻔到精通.pdf
  • DeepSeek 15天指导手册——从入门到精通 (2).pdf
  • DeepSeek 个万能公式.pdf
  • DeepSeek 万能提问模板.pdf
  • DeepSeek 实用万能提问模板.pdf
  • DeepSeek 提问攻略、使用实例和心得.pdf
  • DeepSeek-30个喂饭指令.pdf
  • DeepSeek-R1使用指南(简版).pdf
  • DeepSeek15天入门手册.pdf
  • DeepSeek图解10页PDF.pdf
  • DeepSeek本地部署 再也不怕服务器崩了!.pdf
  • DeepSeek使用攻略.pdf
  • DeepSeek案例大全.pdf
  • DeepSeek隐藏玩法,99%的人都不知道!.pdf
  • DeepSeek指令公式大全.pdf
  • DeepSeek小白使用指南,99%+的人都不知道的使用技巧(建议收藏).docx
  • DeepSeek指导手册从入门到精通.pdf
  • DeepSeek神级提示词,让你轻松驾驭AI.pdf
  • DeepSeek零基础到精通手册(保姆级教程).pdf
  • DeepSeek最强使用攻略,放弃复杂提示词,直接提问效果反而更好?.docx
  • Deepseek 应该怎样提问.pdf
  • Deepseek 高效使用指南.pdf
  • Deepseek+高效使用指南.docx
  • Deepseek不好用,是你真的不会用啊!.docx
  • Deepseek不好用,是你真的不会用啊!.pdf
  • S1模型论文(李飞飞50美元蒸馏).pdf
  • deepseek 应该怎样提问.docx
  • deepseek万能公式:4步提问法.pdf
  • 《7天精通DeepSeek实操手册》.pdf
  • 用DeepSeek搭建个人知识库.doc
  • 当我用 DeepSeek 学习、工作和玩,惊艳!含提问攻略、使用实例和心得.docx
  • 让你的DeepSeek能力翻倍的使用指南.docx
  • 让你的DeepSeek能力翻倍的使用指南.pdf
  • 最有用的 DeepSeek 使用指南 80% 的人都不知道的使用技巧.pdf
  • 清华大学DeepSeek从入门到精通(20250204).pdf
  • 深度对比deepseek、豆包和kimi三款国产主流AI,我发现了一个恐怖的真相.doc
  • 零基础使用DeepSeek高效提问技巧.docx
  • 零基础使用DeepSeek高效提问技巧.pdf
  • 如何正确使用deepseek?99%的人都错了.docx
  • 如何正确使用deepseek?99%的人都错了.pdf
  • 摩根斯坦利报告—DeepSeek对于科技和更广义经济的含义是什么?.pdf
  • 【官网提示库】探索 DeepSeek 提示词样例,挖掘更多可能.docx
  • 高质量大模型基础设施研究报告(2024年).pdf

第三方平台支持


开发者


模型说明

目前发布了两个版本:DeepSeek R1-Zero 和 DeepSeek R1。
其中,DeepSeek-R1-Zero 是一个完全基于强化学习(RL)训练而无需监督微调(SFT)的模型。
通过强化学习(RL),DeepSeek-R1-Zero 自然地展现出许多强大且有趣的推理行为。
然而,它也遇到了一些挑战,如可读性差和语言混合问题。为了解决这些问题并进一步提高推理性能,引入了DeepSeek-R1,它基于 DeepSeek-V3 Base 作为基础模型,并结合强化学习技术,在无需监督数据的情况下显著提升推理能力,突破了传统模型的局限性。
通过独创的GRPO 组相对策略优化方法,模型在训练过程中不断自我优化,从而具备强大的逻辑推理和深度上下文理解能力。上述两个版本都是671B 参数。

同时,也针对Qwen和LLama系列模型使用DeepSeek-R1生成的80万条样本(包括详细答案以及完整的推理链条)进行SFT蒸馏(Distill),推出了多款具备强大推理能力的小型模型。
这些蒸馏版本在保留 R1 逻辑推理能力的同时,大幅降低了推理计算成本,使其更加适合个人用户和企业的私有化部署需求。


完整版(671B):需要至少 350GB 显存/内存,适合专业服务器部署
蒸馏版:基于开源模型(如 QWEN 和 LLAMA)微调,参数量从 1.5B 到 70B 不等,适合本地硬件部署。


蒸馏版与完整版的区别
特性蒸馏版完整版
参数量参数量较少(如 1.5B、7B),性能接近完整版但略有下降。参数量较大(如 32B、70B),性能最强。
硬件需求显存和内存需求较低,适合低配硬件。显存和内存需求较高,需高端硬件支持。
适用场景适合轻量级任务和资源有限的设备。适合高精度任务和专业场景。

蒸馏版模型的特点
模型版本参数量特点
deepseek-r1:1.5b1.5B轻量级模型,适合低配硬件,性能有限但运行速度快
deepseek-r1:7b7B平衡型模型,适合大多数任务,性能较好且硬件需求适中。
deepseek-r1:8b8B略高于 7B 模型,性能稍强,适合需要更高精度的场景。
deepseek-r1:14b14B高性能模型,适合复杂任务(如数学推理、代码生成),硬件需求较高。
deepseek-r1:32b32B专业级模型,性能强大,适合研究和高精度任务,需高端硬件支持。
deepseek-r1:70b70B顶级模型,性能最强,适合大规模计算和高复杂度任务,需专业级硬件支持。

DeepSeek-R1的能力

图片


通过 DeepSeek-R1 的输出,蒸馏了 6 个小模型开源给社区,其中 32B 和 70B 模型在多项能力上实现了对标 OpenAI o1-mini 的效果。

图片



本地部署硬件要求

对于大多数个人用户,建议部署4bit量化模型:

  • 7B/8B模型:8GB显存
  • 14B模型:16GB显存
  • 32B模型:22GB显存
  • 70B模型:48GB显存

可根据下表配置选择使用自己的模型

模型名称参数量大小VRAM (Approx.)推荐 Mac 配置推荐 Windows/Linux 配置
deepseek-r1:1.5b1.5B1.1 GB~2 GBM2/M3 MacBook Air (8GB RAM+)NVIDIA GTX 1650 4GB / AMD RX 5500 4GB (16GB RAM+)
deepseek-r1:7b7B4.7 GB~5 GBM2/M3/M4 MacBook Pro (16GB RAM+)NVIDIA RTX 3060 8GB / AMD RX 6600 8GB (16GB RAM+)
deepseek-r1:8b8B4.9 GB~6 GBM2/M3/M4 MacBook Pro (16GB RAM+)NVIDIA RTX 3060 Ti 8GB / AMD RX 6700 10GB (16GB RAM+)
deepseek-r1:14b14B9.0 GB~10 GBM2/M3/M4 Pro MacBook Pro (32GB RAM+)NVIDIA RTX 3080 10GB / AMD RX 6800 16GB (32GB RAM+)
deepseek-r1:32b32B20 GB~22 GBM2 Max/Ultra Mac StudioNVIDIA RTX 3090 24GB / AMD RX 7900 XTX 24GB (64GB RAM+)
deepseek-r1:70b70B43 GB~45 GBM2 Ultra Mac StudioNVIDIA A100 40GB / AMD MI250X 128GB (128GB RAM+)
deepseek-r1:1.5b-qwen-distill-q4_K_M1.5B1.1 GB~2 GBM2/M3 MacBook Air (8GB RAM+)NVIDIA GTX 1650 4GB / AMD RX 5500 4GB (16GB RAM+)
deepseek-r1:7b-qwen-distill-q4_K_M7B4.7 GB~5 GBM2/M3/M4 MacBook Pro (16GB RAM+)NVIDIA RTX 3060 8GB / AMD RX 6600 8GB (16GB RAM+)
deepseek-r1:8b-llama-distill-q4_K_M8B4.9 GB~6 GBM2/M3/M4 MacBook Pro (16GB RAM+)NVIDIA RTX 3060 Ti 8GB / AMD RX 6700 10GB (16GB RAM+)
deepseek-r1:14b-qwen-distill-q4_K_M14B9.0 GB~10 GBM2/M3/M4 Pro MacBook Pro (32GB RAM+)NVIDIA RTX 3080 10GB / AMD RX 6800 16GB (32GB RAM+)
deepseek-r1:32b-qwen-distill-q4_K_M32B20 GB~22 GBM2 Max/Ultra Mac StudioNVIDIA RTX 3090 24GB / AMD RX 7900 XTX 24GB (64GB RAM+)
deepseek-r1:70b-llama-distill-q4_K_M70B43 GB~45 GBM2 Ultra Mac StudioNVIDIA A100 40GB / AMD MI250X 128GB (128GB RAM+)

技术解读


部署使用微调


赋范空间 - DeepSeek R1微调实战
https://kq4b3vgg5b.feishu.cn/wiki/Qx3Kwpr4HiKu7FkfZA0cgYMSnQe


Ollama 运行

ollama deepseek 模型列表: https://ollama.com/search?q=deepseek

DeepSeek-R1-Distill-Qwen-1.5B

ollama run deepseek-r1:1.5b

教程:如何使用 Ollama 在本地运行 DeepSeek R1?
https://mp.weixin.qq.com/s/J8aFyNCpLsbWvT3mdgHr_Q


2025-02-15(日)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值