2025年爆火全网大模型DeepSeek资源资料汇总——建议收藏~

2025年,DeepSeek大模型凭借其强大的性能和广泛的应用场景,成为AI领域的焦点!无论你是AI从业者、研究人员,还是爱好者,这份资源汇总都能为你提供全面的学习资料和实用工具。以下内容涵盖DeepSeek的模型、教程、使用技巧及本地部署等,助你从入门到精通!
在这里插入图片描述

📂 资源目录

1. DeepSeek大模型资源合集

链接:https://pan.quark.cn/s/44ce44967666

内容:包含DeepSeek最新模型、论文、数据集及实战项目,适合快速入门和深入研究。

2. DeepSeek使用技巧大全
链接:https://pan.quark.cn/s/2b57f8bff0b3

内容:详细讲解如何高效使用DeepSeek,包括提问技巧、优化回答、高级玩法等,助你快速掌握DeepSeek的核心功能。

3. AI指令合集大全
链接:https://pan.quark.cn/s/630a4e0219d1

内容:涵盖各类AI任务的指令模板,包括文本生成、数据分析、代码调试等,提升你的工作效率。

4. DeepSeek从入门到精通
链接:https://pan.quark.cn/s/aa7e2b36f33b

内容:从基础到高级,系统学习DeepSeek的使用方法,包含实战案例和代码示例。

5. DeepSeek本地部署懒人整合包
链接:https://pan.quark.cn/s/81c4f10e6bfa

内容:一键部署DeepSeek的本地环境,适合开发者快速上手。

🚀 DeepSeek使用技巧精华版

一、提问技巧

明确需求:避免模糊提问,直接说明目标、背景和要求。

示例:不要问“帮我写个方案”,而是问“作为跨境电商创业者,我需要制定亚马逊新品推广方案,请按以下框架展开……”。

结构化提问:使用场景化模板,明确目标、对象、效果和问题。

示例:“我要设计一个PPT框架,主题是传统工厂出海战略布局,受众是50岁左右的制造业老板。”

分步骤提问:将复杂问题拆解为多个简单步骤,逐步解决。

示例:“第一步:总结社交媒体营销的五大趋势;第二步:针对我们的产品,挑选三个最适合的趋势;第三步:设计一套实施计划。”

二、优化回答

指定输出格式:明确回答形式,如列表、表格、分点说明等。

示例:“请用对比表格形式展示微波炉vs空气炸锅的加热原理、适用场景和能耗区别。”

追问与反馈:通过追问挖掘细节,或通过反馈修正回答。

示例:“基于这个方案,可能遇到哪些实施风险?给出应对策略。”

三、高级玩法

角色代入法:让DeepSeek扮演特定角色回答问题。

示例:“你是一位资深程序员,请帮我解释一下Python中的递归函数。”

跨模态融合:结合图片、文字、数据等多种模态进行提问。

示例:“解读这张用户行为热图,点出三个用户流失的关键点,并用箭头标出改进方向。”

逆向提问技巧:让DeepSeek帮助你列出关键问题。

示例:“我现在打算开展某个项目,但不太确定具体需求应该怎么描述,请你帮我列出5个关键问题,协助我理清思路。”

四、避坑指南

简化回答:如果回答过于复杂,可以要求DeepSeek用更简单的方式解释。

示例:“用小学生能听懂的话解释RLHF。”

代码报错:直接粘贴错误信息和代码,让DeepSeek帮助调试。

示例:“以下代码报错,请帮我修复:[粘贴代码]。”

避免冗长回答:如果不需要详细回答,可以要求DeepSeek只输出核心步骤或关键结论。

示例:“请用一句话总结这篇文章的核心观点。”

🌟 高效提问公式
身份 + 任务 + 要求 + 例子

示例:“作为健身教练(身份),帮我制定减肥食谱(任务),要一周不重样(要求),像这样(例子)……”

🚀 DeepSeek交流探索

❤️欢迎关注我的公众号【一起收破烂】,回复【006】获取 最新java面试资料以及简历模型120套哦😊

❤️DeepSeek探索交流群,可加V: UoSerein ,备注:DS

在这里插入图片描述

### 大模型课程资料与全栈项目实践方案 #### 一、大模型学习资源概述 当前,随着人工智能技术的发展,大模型(Large Language Models, LLMs)已经成为热门领域之一。为了系统化地掌握大模型的知识和技术,可以从以下几个方面入手:获取详尽的学习资料[^1],参与专业的培训课程[^2],并结合实际项目进行动手实践[^3]。 以下是针对大模型学习的一些建议和推荐资源: - **学习路线图**:一份清晰的大模型学习路线图可以帮助初学者快速入门,并逐步深入理解复杂的技术细节。 - **商业落地方案**:了解如何将大模型应用于实际场景中至关重要。已有超过百套的商业化落地方案可供参考,这些方案能够帮助开发者更好地规划自己的项目方向。 - **视频教程与文档阅读**:观看高质量的教学视频以及研读经典书籍都是不可或缺的部分。目前存在大量免费或付费形式的大模型相关视频教程及PDF版本教材供选择。 #### 二、具体课程内容解析 对于想要成为AI大模型全栈工程师的人来说,“某乎AI大模型全栈工程师”系列课程是一个不错的选择。该课程具有以下特点: - 提供了从基础知识到高级技巧全覆盖的内容体系; - 注重实战操作能力培养,在多个模块里安排有具体的coding练习环节; - 设置专门章节讲解如何制定科学合理的项目计划书; - 定期邀请业内专家分享新趋势见解; 此外,还有其他类似的在线教育平台也开设有关于构建端到端解决方案方面的专项训练营[^4]。 #### 三、全栈工程项目实例说明 完成理论知识积累之后,则需要投入到真实的工程环境中锻炼自己解决问题的能力。下面列举几个典型的全栈型任务作为例子: 1. 数据预处理阶段涉及爬取网络公开数据源、标注样本标签等工作流程; 2. 利用PyTorch/TensorFlow框架搭建神经网络结构并对参数调优; 3. 部署经过验证有效的预测服务接口至云端环境以便外部访问调用. 以上每一步都需要紧密配合才能达成终目标——即创造出既高效又可靠的智能化工具服务于社会大众的需求. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("chatglm2") model = AutoModelForCausalLM.from_pretrained("chatglm2") def fine_tune_model(data): optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(epochs): model.train() total_loss = 0 for batch in data: inputs = tokenizer(batch['text'], return_tensors="pt", truncation=True, padding=True).to('cuda') outputs = model(**inputs, labels=inputs.input_ids) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() fine_tune_model(training_data) ``` 此代码片段展示了如何利用Hugging Face库加载预训练好的ChatGLM2模型,并对其进行微调的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

收破烂的小熊猫~

你的鼓励将是我创造最大的东西~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值