第一章 空间解析几何与向量代数(1)

第一节 空间直角坐标系

数学史话
        17世纪中叶,费马(Fermat)和笛卡尔(Descartes)把二维平面解析几何,推广到三维空间。他们指出,三维空间的几何图形,可用三维空间动点的轨迹来表达,也可以用代数方程来表达;而空间中的一个动点,则是三元不定方程的一组解(𝒙, 𝒚, 𝙯),并且这个不定方程的所有解,构成了三维空间中的曲面。
        费马(Fermat)简单讲述了他的三维解析几何的思想,他认为各种曲面,如抛物面、双曲面等,都是在三维空间的。因此,三维空间曲面上的曲线,一定也是三维的,它们可以用三个未知量的方程表出。
        笛卡尔(Descartes)在他的《方法论》(1637年)附录之一的《几何》中指出,一个三元不定方程的一组解是三维空间中轨迹上的一个点,所有解的轨迹是一个曲面。
        18世纪,数学家在继续研究二维平面解析几何的同时,开始了对三维空间解析几何的系统研究。研究的结果,使得一门新的几何学诞生,这就是后来的“微分几何”。
        18世纪,法国数学家克莱罗(Clairaut),他在几何上把空间曲线看成是两个曲面的交线,在代数中他把三维曲面方程表达为含有𝒙, 𝒚, 𝙯三个未知量的方程。
        克莱罗(Clairaut)的论述,用现代的写法就是,一个不定代数方程𝒇(𝒙, 𝒚, 𝙯)=0所有的解的轨迹,在几何上是三维空间的曲面。如果两个曲面相交,那么在代数上的表达是,代数方程𝒇(𝒙, 𝒚, 𝙯)=0𝒈(𝒙, 𝒚, 𝙯)=0有公共的解,而这些所有的解的轨迹组成的曲线,就是两个曲面的交线,这条交线就是三维空间的曲线。
        1731年,克莱罗(Clairaut)在他的数学著作《关于双重曲率曲线的研究》中,他把空间曲线称为“双曲率线”,这是因为他注意到,空间曲线在两个互相垂直平面上的投影,各有一个曲率,而这二个曲率属于同一条空间曲线,所以克莱罗(Clairaut)把空间曲线称为“双曲率线”。
        
一、空间直角坐标系
约定Z轴的正方向符合右手规则:用右手握住Z轴,四指从X轴正向以90度转向Y轴正向时,大拇指的方向即为Z轴正向。按此约定的坐标系又称右手系
1、空间直角坐标系的相关概念
  • 在空间直角坐标系Oxyz中,任意两个坐标轴可确定一平面,称为坐标面。由x轴和y轴确定的坐标面称为xOy面,类似有yOz面和zOx面。
  • 三个坐标面把空间分为八个部分,每一部分称为一个卦限,从第一个卦限开始按逆时针方向分别用罗马数字命名。
如何根据点坐标判别处于哪一个卦限,一般步骤可分2步:
  • 首先根据z坐标值(竖坐标)区分上下界面(z > 0属一、二、三、四限;z < 0属五、六、七、八限)。
  • 然后根据x,y坐标值(可画出平面直角坐标系图)来判别具体处于哪一个卦限。

点与坐标:

向量与空间中的点M以及一组有序数x, y, z之间存在一一对应的关系,称有序数x, y, z为向量以及点M的坐标,记作= (x, y, z) 和 M(x, y, z)。

特殊点的坐标:
原点O(0, 0, 0) 
坐标轴上的点P,Q,R,至少有两个0坐标值
坐标面上的点A,B,C,至少有一个0坐标值
空间中两点的距离公式

空间两点之间距离公式的推导过程是两次勾股定理的运用。
2、向量的坐标表示
在建立了空间直角坐标系后,对于任一空间向量 , 我们都可以通过平移使该向量的起点位于坐标原点O处,此时向量的终点记为M,按这种方式,每一空间向量都有空间中一点唯一与之对应。
空间直角坐标系中的点关于什么轴/平面对称,什么坐标就不变,其余的分坐标均取反。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 空间解析结合与向量代数线性代数的基础内容,主要研究线性空间的性质和向量的运算规律。在空间解析结合,我们将实数域上的向量或元素按照一定规则进行加法和乘法运算,得到一个线性空间向量代数是对线性空间向量进行代数运算,包括向量的加法、数乘、内积、数乘等。 通过空间解析结合与向量代数,我们可以更直观地理解和描述线性空间以及其向量运算。线性空间向量可以用坐标表示,可以使用坐标运算进行向量相加、减法、数乘等运算,这样简化了向量的计算过程,使得问题更加直观易懂。 向量代数的一些重要概念包括线性组合、线性无关、基、维数、子空间等,这些概念对于理解线性空间的结构和性质至关重要。线性代数的一些重要定理和推论也可以通过空间解析结合与向量代数的方法进行证明,并且得到更直接的几何解释。 在应用方面,空间解析结合与向量代数是多门学科的重要工具,如物理学向量力学、电磁学的矢量场、计算机图形学的几何变换等都离不开向量的运算和坐标表示。此外,在实际问题,也经常需要将问题抽象成线性方程组或矩阵方程组,通过向量代数的方法求解,这样不仅可以简化问题,还可以得到更一般的解决方案。 总之,空间解析结合与向量代数线性代数重要的基础内容,既可以帮助我们更深入地理解线性空间的结构和性质,也可以在实际问题提供有力的数学工具。希望能够通过下载相关的pdf文献,进一步深入学习和应用这些知识。 ### 回答2: 空间解析结合与向量代数线性代数的重要内容之一。在空间解析结合,我们研究的是空间的点、直线、面及其相交关系等问题。通过运用向量代数的知识,我们可以更方便地处理这些问题,并得到更加简洁的结果。 在向量代数,我们可以用向量来表示空间的点、直线、面等几何对象。向量的运算包括加法、减法、数量乘法和点乘。通过向量的加法和减法,我们可以得到空间两点之间的位移向量;通过数量乘法,我们可以得到位移向量的倍数或相反向量;通过点乘,我们可以得到向量的模长、两向量之间的夹角以及两向量是否垂直等信息。 空间解析结合与向量代数的关系体现在以下几个方面: 1. 使用向量表示空间的几何对象:通过向量的线性组合,我们可以表示空间的直线、平面,甚至是更高维度的几何对象。这样做不仅简化了表达形式,还便于进行运算和推导。 2. 运用向量运算求解几何问题:通过向量代数的运算,我们可以求解空间的几何问题。比如,在求解两线段是否相交时,我们可以将线段的两个端点表示为向量,然后通过向量的线性组合和点乘等运算处理得到结果。 3. 应用向量代数的性质简化问题表达:向量代数具有一些良好的性质,如分配律、结合律等。运用这些性质,我们可以简化问题的表达形式,更加清晰地描述问题。 综上所述,空间解析结合与向量代数是相辅相成的,在处理空间几何问题时,我们可以结合使用它们,通过向量的加法、点乘等运算,得到简单而又准确的结果。 ### 回答3: 空间解析结合是指将几何问题转化为向量代数问题进行求解的方法。通过使用向量向量运算,我们可以利用向量的方向和大小描述几何体的特征,从而更方便地进行计算和分析。 在空间解析结合,我们使用向量的坐标表示法来表示空间的点、直线、平面和其他几何体。例如,对于一个点P,可以使用它的坐标表示为P(x, y, z),其x、y、z分别表示点P在x轴、y轴和z轴上的坐标。 通过向量代数,我们可以进行向量的加法、减法、数乘和点乘等运算。这些运算可以帮助我们求解空间的距离、夹角、平面的方程等几何问题。例如,通过向量的点乘可以求解两条直线的夹角,通过向量的叉乘可以求解平面的法向量。 此外,向量代数还可以用于解决空间的线性方程组和矩阵运算问题。通过将线性方程组转化为矩阵形式,我们可以使用向量代数的方法求解未知数。而矩阵的乘法、转置和逆等运算也可以帮助我们简化空间解析问题的计算过程。 通过空间解析结合与向量代数,我们可以将几何问题转化为向量的运算问题,利用向量的特性进行解答。这种方法不仅能够简化计算过程,还能够提高问题的求解效率。因此,空间解析结合与向量代数的应用具有重要的理论和实际意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值