NER常见的解决方案汇总(deep learning)

文章介绍了NER(命名实体识别)的任务,通过BIOES标注方式解释了实体识别的过程。讨论了多种模型如BiLSTM-CRF、IDCNN-CRF和BERT-CRF等在该领域的应用,并提到了一些相关论文,如使用MRC框架和全局指针的创新方法。此外,文章还提及了高效的BERT变体和在NER中的应用。
摘要由CSDN通过智能技术生成

任务介绍

NER (Named Entity Recognition)即命名实体识别。顾名思义就是识别文本当中的实体信息。举个例子,

输入:张三现在在武汉市江夏区金融港

输出:B-PER,E-PER,O, O,O,B-CITY,I-CITY,E-CITY,B-DISTRICT,I-DISTRICT,E-DISTRICT,B-LOCATION,I-LOCATION,-E-LOCATION

其中,“张三”以PER,“武汉市”以CITY,“江夏区”以DISTRICT,“金融港”以LOCATION为实体类别分别挑了出来。

NER的过程,就是预测出其序列标注的过程。

备注:
BIOES标注方式中分别代表什么意思:
B,即Begin,表示开始
I,即Intermediate,表示中间
E,即End,表示结尾
S,即Single,表示单个字符
O,即Other,表示其他,用于标记无关字符

相关论文

目前的解决方案及对应的paper如下,其中bilstm-crf和bert-crf成为ner领域常用的baseline。

BiLSTM-CRF

paper:Neural Architectures for Named Entity Recognition

IDCNN-CRF

paper:Fast and Accurate Entity Recognition with Iterated Dilated Convolutions

BERT-CRF

ner-mrc

paper:A Unified MRC Framework for Named Entity Recognition

BERT-CASCADE-CRF

paper:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction

FLAT

paper:FLAT: Chinese NER Using Flat-Lattice Transformer

global-pointer

paper:Global Pointer: Novel Efficient Span-based Approach for Named Entity Recognition

efficient-global-pointer

blog:Efficient GlobalPointer:少点参数,多点效果

bert-biaffine

paper:Named Entity Recognition as Dependency Parsing

评测结果 to be continued

github

bert4torch 里面的轮子已经非常丰富了,咱就直接拿来用就好了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值