三维点云语义分割【综述】 ——Deep Learning for 3D Point Clouds: A Survey


3D点云分割需要了解全局几何结构和每个点的细粒度细节。根据分割粒度,可以将3D点云分割方法分为三类:语义分割(场景级别),实例分割(对象级别)和部件分割(部件级别)。

3D Semantic Segmentation

给定一个点云,语义分割的目标是根据它们的语义将点云分为几个子集。类似于3D形状分类的分类法,存在两种语义分割范例,即基于投影的方法和基于点的方法。我们在图8中显示了几种代表性方法。
在这里插入图片描述

Projection-based Networks

中间正则表示可以组织或分类为多视图表示[148],[149],球形表示[150],[151],[152],体积表示[153],[154],[155],多面体如图9所示,可以使用点阵表示[156],[157]和混合表示[158],[159]。

Multi-view Representation. Felix等[148]首先从多个虚拟相机视图将3D点云投影到2D平面上。然后,将多流FCN用于预测合成图像上的逐像素得分。每个点的最终语义标签是通过将重新投影的分数融合到不同的视图上而获得的。同样,Boulch等[149]首先使用多个相机位置生成了点云的几个RGB和深度快照。然后使用2D分割网络对这些快照执行逐像素标记。从RGB和深度图像预测的分数将使用残差校正进一步融合[160]。 Tatarchenko等人基于点云是从局部欧几里得表面采样的假设。 [161]介绍了切线卷积的密集点云分割。该方法首先将围绕每个点的局部曲面几何投影到虚拟切线平面。然后,切线卷积直接在曲面几何上进行运算。该方法显示了出色的可伸缩性,并且能够处理具有数百万个点的大规模点云。总体而言,多视图分割方法的性能对视点选择和遮挡很敏感。此外,这些方法还没有充分利用基础的几何和结构信息,因为投影步骤不可避免地会导致信息丢失。

Spherical Representation. 为了实现3D点云的快速准确分割,Wu等[150]提出了一个基于SqueezeNet [162]和条件随机场(CRF)的端到端网络。为了进一步提高分割精度,引入了SqueezeSegV2 [151],以利用无监督的域自适应流水线解决域移位问题。 Milioto等。 [152]提出了RangeNet ++用于LiDAR点云的实时语义分割。首先将2D范围图像的语义标签传输到3D点云,然后使用有效的基于GPU的KNN基于后处理的步骤来减轻离散化错误和推理输出模糊的问题。与单视图投影相比,球形投影保留了更多信息,并且适合于LiDAR点云的标记。但是,这种中间表示不可避免地带来了一些问题,例如离散化误差和遮挡。

Volumetric Representation. Huang等[163]首先将点云划分为一组占用体素。然后,他们将这些中间数据输入到全3D卷积神经网络中,以进行体素分割。最后,为体素内的所有点分配与体素相同的语义标签。该方法的性能受到体素的粒度和由点云分区引起的边界伪像的严重限制。此外,Tchapmi等。 [164]提出了SEGCloud来实现细粒度和全局一致的语义分割。这种方法引入了确定性三线性插值,将3D-FCNN [165]生成的粗体素预测映射回点云,然后使用完全连接CRF(FCCRF)来增强这些推断的点标签的空间一致性。孟等[153]引入了基于内核的内插变分自动编码器架构,以编码每个体素内的局部几何结构。代替二进制占用表示,对每个体素采用RBF以获得连续表示并捕获每个体素中点的分布。 VAE进一步用于将每个体素内的点分布映射到紧凑的潜在空间。然后,对称组和等效CNN均用于实现鲁棒的特征学习。

良好的可伸缩性是体积表示的显着优点之一。具体来说,基于体积的网络可以自由地在具有不同空间大小的点云中进行训练和测试。在全卷积点网络(FCPN)[154]中,首先从点云中分层提取不同级别的几何关系,然后使用3D卷积和加权平均池来提取特征并合并远程依赖项。该方法可以处理大规模的点云,并且在推理过程中具有良好的可伸缩性。Angela等[166]提出了ScanComplete,以实现3D扫描完成和逐像素语义标注。该方法利用了全卷积神经网络的可伸缩性,可以在训练和测试期间适应不同的输入数据大小。从粗到精策略用于分层提高预测结果的分辨率。体积表示自然是稀疏的,因为非零值的数量只占很小的百分比。因此,在空间稀疏数据上应用密集卷积神经网络效率低下。为此,Graham等[155]提出了子流形稀疏卷积网络。该方法通过将卷积的输出限制为仅与占用的体素有关,从而大大减少了内存和计算成本。同时,其稀疏卷积还可以控制所提取特征的稀疏性。该子流形稀疏卷积适用于高维和空间稀疏数据的有效处理。此外,Choy等 [167]提出了一种称为MinkowskiNet的4D时空卷积神经网络,用于3D视频感知。为了有效处理高维数据,提出了一种广义的稀疏卷积算法。三边平稳条件随机字段被进一步应用以增强一致性。

总体而言,体积表示自然保留了3D点云的邻域结构。它的常规数据格式还允许直接应用标准3D卷积。这些因素导致了该领域性能的稳步提高。然而,体素化步骤固有地引入了离散化伪像和信息丢失。通常,高分辨率会导致较高的内存和计算成本,而低分辨率会导致细节丢失。在实践中选择合适的网格分辨率并非易事。

Permutohedral Lattice Representation. Su等[156]提出了基于双边卷积层(BCL)的稀疏格子网络(SPLATNet)。该方法首先将原始点云插值到四面体的稀疏晶格,然后将BCL应用于在稀疏填充的晶格的占据部分进行卷积。然后将滤波后的输出内插回原始点云。另外,该方法允许灵活地联合处理多视图图像和点云。此外,Rosu等 [157]提出了LatticeNet来实现大点云的有效处理。还引入了称为DeformsSlice的与数据相关的插值模块,以将晶格特征反投影到点云。

Hybrid Representation. 为了进一步利用所有可用信息,已经提出了几种方法来从3D扫描中学习多模式特征。 Angela和Matthias [158]提出了一个联合3D多视图网络,以结合RGB特征和几何特征。使用3D CNN流和几个2D流来提取特征,并提出了一个可微的反投影层,以联合融合学习到的2D嵌入和3D几何特征。此外,洪等。 [168]提出了一个基于点的统一框架,以从点云中学习2D纹理外观,3D结构和全局上下文特征。该方法直接应用基于点的网络从稀疏采样的点集中提取局部几何特征和全局上下文,而无需任何体素化。 Jaritz等[159]提出了Multiview PointNet(MVPNet)来聚合2D多视图图像的外观特征和规范点云空间中的空间几何特征。

Point-based Networks

基于点的网络直接在不规则点云上工作。但是,点云是无序的且没有结构,因此直接应用标准CNN并不可行。为此,提出了开拓性的工作PointNet [5]以使用共享MLP学习每点特征,并使用对称池功能学习全局特征。基于PointNet,最近提出了一系列基于点的网络。总体而言,这些方法可以粗略地分为pointwise MLP methods, point convolution methods, RNN-based methods, and graph-based methods.

Pointwise MLP Methods. 这些方法通常使用共享MLP作为其网络中的基本单位,以提高效率。然而,由共享的MLP提取的逐点特征不能捕获点云中的局部几何以及点之间的交互[5]。为了捕获每个点的更广泛的上下文并学习更丰富的局部结构,已引入了几个专用网络,包括基于相邻特征池,基于注意力的聚合以及局部全局特征串联的方法。

       Neighboring feature pooling: 为了捕获局部几何图案,这些方法通过聚集来自局部相邻点的信息来学习每个点的特征。特别是,PointNet ++ [27]将点从更大的局部区域中分层并逐步学习,如图10所示。还提出了多尺度分组和多分辨率分组,以克服由不均匀和密度变化引起的问题。点云。后来,江等。 [114]提出了一个PointSIFT模块来实现定向编码和尺度感知。该模块通过三阶段有序卷积操作对来自八个空间方向的信息进行堆叠和编码。提取并连接多尺

  • 12
    点赞
  • 73
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习三维点云中的应用正在逐渐得到广泛关注。近年来,许多学者对深度学习三维点云领域的研究进行了广泛的探讨和总结,这些工作涉及到点云的表示、分类、分割、重建等多个方面。这些研究成果为三维点云的处理和分析提供了新的思路和方法,也为实际应用带来了更多的可能性。 是的,您的问题是关于“deep learning for 3d point clouds: a survey”这个主题的。我回答说,深度学习三维点云领域的应用正在逐渐得到广泛关注,这得益于许多学者对深度学习三维点云领域的研究和总结。这些研究成果为点云的表示、分类、分割、重建等多个方面提供了新的思路和方法,同时也为实际应用带来了更多的可能性。是的,您的理解是正确的。在近年来,随着深度学习的快速发展,越来越多的学者开始将其应用于三维点云的处理和分析。这些研究成果不仅提高了点云数据的处理效率和准确性,也在许多领域带来了新的应用,比如自动驾驶、智能机器人、虚拟现实等。因此,这个领域的研究仍在不断深入,未来还将有更多的发展和应用。正确,我的回答的意思是近年来,深度学习三维点云领域的应用受到了广泛的关注,许多学者对此进行了探讨和总结,这些研究成果提供了许多新的思路和方法,为点云的处理和分析带来了更多可能性。同时,这些研究成果也在实际应用中得到了验证,为自动驾驶、智能机器人、虚拟现实等领域带来了新的机遇和挑战。因此,这个领域的研究仍在不断发展和深入,未来还将有更多的进展和应用。非常正确!您的理解和回答都很准确。深度学习三维点云领域的研究和应用正变得越来越重要,并且在许多实际应用中得到了验证和应用。未来,随着技术的不断进步和发展,这个领域将会有更多的进展和应用。非常感谢您的反馈和确认,我很高兴我的回答能够准确回答您的问题并得到您的认可。如果您有任何其他问题或疑虑,欢迎随时向我提出。谢谢您的回答和解释。我对深度学习三维点云领域的应用感兴趣,因为我认为这个领域的发展会对很多领域产生积极影响。您提到的自动驾驶、智能机器人、虚拟现实等领域是非常好的例子。我期待着这个领域的未来发展和创新,也期待着深度学习三维点云领域的更多应用和成果。如果我有其他问题,我一定会再次向您咨询。再次感谢您的回答。 深度学习3D点云中的应用研究已发展成为一个活跃的研究领域,它为3D点云处理提供了新的机遇和挑战。最近的研究表明,深度学习技术可以有效地提高3D点云处理任务的性能,如分类、分割、检测、识别和重建等。"Deep learning for 3D point clouds: a survey"(三维点云深度学习:一份综述)是一篇关于三维点云深度学习领域的综述论文。该论文介绍了近年来在三维点云深度学习领域的相关研究进展、方法和应用。这篇论文提供了对该领域的全面了解和深入了解的良好起点。"3D点云的深度学习综述" 是一篇介绍3D点云深度学习的论文。3D点云是由大量的三维点构成的数据集,这些点通常是由传感器如激光雷达或摄像头获取的。该论文介绍了使用深度学习技术处理3D点云数据的现有方法,包括点云分类、分割、生成和重建等任务。此外,该论文还总结了3D点云深度学习研究的挑战和未来的研究方向。深度学习三维点云方面的研究概述是一篇关于三维点云数据如何应用深度学习综述性文章。这篇文章概括了深度学习三维点云处理中的应用现状,包括三维点云表示方法、深度学习模型、三维点云分类、分割、检测等应用领域。这篇文章对于研究三维点云数据处理的学者和工程师来说,是一篇非常有价值的综述文章。深度学习三维点云方面的应用已经成为一个热门的研究领域。这方面的研究涉及到很多问题,比如点云的表示方法、点云的分类、分割和检测等。在这个领域,人们已经开发出了许多深度学习模型,比如PointNet、PointCNN和DGCNN等。这些模型不仅可以在三维点云的分类、分割和检测方面取得很好的性能,而且还可以用于三维场景的重建和生成。未来,深度学习三维点云方面的研究将继续发展,并有望在各种领域得到广泛应用,比如计算机视觉、机器人学和自动驾驶等。 深度学习三维点云方面的应用一直受到越来越多的关注,近几年出现了许多基于深度学习的研究,其中一些研究针对三维点云提出了有效的计算机视觉方法。深度学习3D点云方面的应用是当前计算机视觉领域的热门研究方向。3D点云数据广泛应用于物体检测、场景分割、物体跟踪、三维重建等领域。本文对当前的研究进展进行了综述,包括基于深度学习3D点云表示、3D点云分类、3D物体检测与分割、3D点云生成等方面。同时,文章还介绍了一些经典的深度学习模型和算法在3D点云处理中的应用,以及一些未来的研究方向和挑战。 深度学习三维点云上的应用是一个复杂而又有趣的课题,已经有很多研究者对其进行了探讨。 深度学习三维点云中的应用研究已经有相当多的研究,从分类到语义分割,从聚类到检索,它们都能帮助我们更好地理解三维空间中的物体。深度学习三维点云中的应用已经成为了计算机视觉领域的研究热点之一。针对这个主题的调查研究文章已经发表,并得到了广泛的关注和应用。这篇文章综述三维点云深度学习的现状和发展趋势,包括点云特征提取、点云分类、点云分割、点云配准和重建等方面的应用。它涵盖了当前研究的最新成果和技术,并为未来研究提供了有用的指导。深度学习用于三维点云的研究综述深度学习3D点云上的应用调查 3D点云是一种常用于三维物体建模的数据表示方法,它由大量的点构成,每个点都有自己的坐标和颜色信息。近年来,深度学习在处理3D点云方面取得了不少进展,因为它可以自动提取特征,并且能够处理不规则形状的点云数据。 本调查旨在介绍目前深度学习3D点云上的应用现状和研究方向。其中包括3D点云数据的预处理、特征提取、分类、分割和目标检测等方面的应用。调查还将介绍一些重要的深度学习模型,例如PointNet、PointNet++和DGCNN等,并探讨它们在3D点云任务中的应用。 此外,本调查还将介绍一些挑战和未来研究方向,例如如何更好地处理大规模的3D点云数据、如何进行高效的训练、如何解决点云数据不完整和噪声的问题等。 综上所述,本调查旨在全面了解深度学习3D点云上的应用现状和发展方向,为研究者提供参考和指导。深度学习三维点云中的应用已经成为计算机视觉领域中的热门话题。这种技术可以用于各种应用,如智能交通、机器人、建筑设计和虚拟现实等。近年来,研究人员开展了大量工作来探索如何使用深度学习技术处理三维点云数据,包括点云分类、分割、重建和生成等方面。这些工作为未来更广泛的三维点云应用奠定了基础。深度学习对于三维点云的应用是一个广泛研究的领域。针对三维点云深度学习方法包括基于图像的方法、基于体素的方法、基于光滑流形的方法以及基于深度学习的方法。这些方法可以用于点云的分类、分割、检测和生成等任务。然而,三维点云的不规则性和噪声等问题给深度学习带来了一定挑战,因此仍然有很多值得研究的问题和挑战。深度学习三维点云数据上的应用是当前研究的热点之一。点云是一种非常常见的三维数据表示形式,用于描述空间中的对象或场景。它们通常由大量离散的点组成,每个点都有位置、颜色和其他属性。 在点云数据上应用深度学习可以实现许多有趣的任务,例如对象识别、场景分割、点云重建和姿态估计等。这些任务通常涉及到将点云数据映射到高维特征空间中,然后使用深度学习模型对这些特征进行学习和推理。 近年来,研究人员提出了许多用于点云处理的深度学习模型,例如PointNet、PointNet++、DGCNN、RSNet、KPConv等。这些模型大多基于卷积神经网络(CNN)的思想,但是由于点云数据的特殊性质,需要对CNN进行一些修改和优化。 总的来说,深度学习在点云数据上的应用是一个非常有前途的研究方向,未来还将涌现出更多的创新性模型和应用场景。深度学习对于3D点云的应用是一门新兴的领域,该领域主要研究如何将深度学习算法应用于处理三维点云数据。这个领域的目标是通过分析、理解和预测三维点云数据中的结构和特征,为各种应用提供支持。这些应用包括计算机视觉、机器人技术、虚拟现实、自动驾驶和智能制造等。 该领域的研究主要集中在以下几个方面:点云数据的表示方法、点云数据的预处理和增强方法、点云数据的特征提取方法、点云数据的分类和识别方法、点云数据的分割和语义分析方法以及点云数据的生成和重建方法等。 当前,该领域的研究已经取得了很多进展,包括PointNet、PointNet++、PointCNN、DGCNN等经典的网络模型,以及各种预处理、增强、分类、分割、生成和重建算法。然而,由于点云数据的稀疏性、噪声和不规则性等问题,该领域仍然存在许多挑战,例如如何有效地表示点云数据、如何处理缺失和噪声、如何实现更准确的语义分析等。 总之,深度学习对于3D点云的应用是一个充满挑战但也充满机遇的领域,它将继续吸引更多的研究人员和工程师加入其中,推动其发展并为各种应用提供支持。深度学习三维点云数据处理方面的应用正在成为一个热门研究领域。对于三维物体的识别、分割、分类和重建等任务,深度学习可以提供高效而准确的解决方案。在这篇综述论文中,作者们回顾了近年来在三维点云数据处理领域中深度学习方法的发展和应用,涵盖了从最初的基于图像的方法到现在的端到端学习方法。此外,论文还总结了当前存在的一些挑战和未来的研究方向,这些研究方向将帮助我们更好地利用深度学习技术来处理三维点云数据。深度学习三维点云中的应用已经引起了广泛的关注和研究。针对这个领域的综述文章,通常被称为"deeplearning for 3D point clouds: a survey"。这篇文章主要介绍了使用深度学习方法处理三维点云数据的各种技术和应用。其中,包括了三维点云数据的表示方法、深度学习网络的架构、点云分类、分割、重建和生成等应用。此外,文章还介绍了当前在三维点云领域存在的一些问题和挑战,以及未来可能的研究方向。深度学习用于三维点云的研究综述deeplearningfor3dpointclouds:asurvey)。这篇文章涵盖了深度学习三维点云数据处理方面的应用,包括点云分类、分割、生成和重建等方面。它介绍了不同的神经网络模型和技术,并讨论了这些模型和技术在三维点云处理中的优缺点。此外,这篇综述还总结了一些应用案例,说明深度学习三维点云处理中的潜在应用。 深度学习用于三维点云的研究取得了巨大进展,其中包括自动分割、分类和识别等功能。深度学习3D点云中的应用是一个广泛的研究领域。许多研究人员已经探索了使用深度学习进行点云分类、分割、重建和生成等任务的方法。这些任务可以在自动驾驶、机器人、虚拟现实等领域中发挥重要作用。在研究中,人们使用卷积神经网络、循环神经网络和图形神经网络深度学习模型来处理点云数据。此外,还开发了许多基于深度学习的点云处理工具和库,如PointNet、PointNet++、PCL、Open3D等。未来,深度学习3D点云领域的应用将会越来越广泛,随着技术的发展和研究的深入,我们将看到更多强大的深度学习算法和工具被开发出来。深度学习三维点云上的应用:一份综述 随着3D扫描技术的不断发展和普及,三维点云成为了越来越重要的一种数据形式。深度学习已经在计算机视觉、自然语言处理等领域取得了显著的成功,因此,越来越多的研究者开始探索如何将深度学习应用于三维点云。本文对当前三维点云深度学习的研究现状进行了综述。 首先,本文介绍了三维点云的基础知识,包括三维点云的表示方法、处理方法以及一些重要的三维点云数据集。 然后,本文介绍了三维点云深度学习的基本思想和发展历程。随着卷积神经网络和其它深度学习技术的发展,三维点云深度学习也取得了一系列的进展,包括点云分类、分割、检测、生成等任务。本文分别介绍了这些任务的基本思路、重要方法以及常用的数据集和评价指标。 最后,本文总结了三维点云深度学习的挑战和未来发展方向。三维点云数据的稀疏性和不规则性、计算效率的问题以及缺乏大规模数据集等都是当前需要解决的重要问题。未来,三维点云深度学习将继续在计算机视觉、自动驾驶、机器人等领域发挥重要作用。 总之,本文旨在为那些对三维点云深度学习感兴趣的研究者提供一个全面的综述,希望能够促进三维点云深度学习领域的研究进展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值