Leveraging Third-Order Features in Skeleton-Based Action Recognition
CVPR2021
利用基于骨架的动作识别中的三阶功能
从3D关节坐标提取特征作为空间时间线索,在GNN中用于融合图像。使用第一和二阶特征,即关节和骨骼表示导致了高精度,但是许多模型仍被具有类似运动轨迹的运动混淆。文章提出以角度的形式作为第三阶特征融合到架构中,来更鲁棒地捕捉关节和身体部位之间关系。
骨架被视为曲线图,顶点是关节,边缘是骨骼。一阶特征是关节,二阶特征是骨骼(一个关节与邻居关节在体中心方向之间的矢量差)。
文章提出以角度形式使用三阶表示,角度特征,包括角度距离和速度捕获身体部位之间的相对运动,同时保持对人类身体不同尺寸不变性。
邻接矩阵来学习节点之间的关系,邻接矩阵仅捕获承兑相关性,而角度是涉及三个相关关节的三阶关系。
- 提出了角度距离特征形式的三阶表示以及它们的速度。它们捕获身体部位之间的相对运动,同时保持对不同人体尺寸的不变性。
- 角度特征可以容易地融合到现有的动作识别架构中以进一步提高性能。实验表明,角度特征是在现有特征中的互补信息,即关节和骨骼表示。文章是第一个将角度集成到现代空间的GCN中,并在包括NTU60和NTU120的几个基准上实现最先进的结果。
- 简单而强大的模型采用较少的训练参数,并且需要较少的推理时间,从而能够在边缘设备上支持实时动作识别。
Angular Feature Encoding
Angular Feature Representation
目标关节 u u u,和两个骨骼端点 w 1 , w 2 w_1,w_2 w1,w2, b ⃗ u w i = ( x w i − x u , y w i − y u , z w i − z u ) \vec{b}_{uw_i}=(x_{w_i}-x_u,y_{w_i}-y_u,z_{w_i}-z_u) buwi=(xwi−xu,ywi−yu,z