CNN时间序列异常检测——Time Series Anomaly Detection Using Convolutional Neural Networks and Transfer Learning

本文介绍了使用卷积神经网络(CNN)和转移学习进行时间序列异常检测的方法。研究提出了一种基于U-Net的CNN架构,适用于时间序列分割,解决了数据稀疏问题。此外,还提出了一种名为MU-Net的新架构,用于从单变量任务向多变量任务的转移学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Time Series Anomaly Detection Using Convolutional Neural Networks and Transfer Learning

使用卷积神经网络和转移学习的时间序列异常检测

2019


时间序列异常检测在自动化监控系统中发挥着关键作用。与时间序列异常检测相关的最先前的深度学习努力基于经常性的神经网络(RNN)。文章提出了一种基于卷积神经网络(CNN)的时间序列分割方法进行异常检测。此外,提出了一种转移学习框架,其在大规模合成单变量时间序列数据集上预先绘制模型,然后用以前看不见的异常类别的小规模,单变量或多变量数据集进行微调。对于多变量的情况,介绍了一种新颖的网络架构。该方法成功地测试了多个合成和实际数据集。

RNN通常应用于时间序列任务,而CNN通常是图像相关任务的首选。
时间序列异常检测与图像分割共享许多共同方面。当一个人可视化时间序列并选择异常段时,如果存在,则感知过程与看图像和标记所需对象的人非常相似。在这项研究中,创建了一种基于CNN的深网络,用于时间序列异常检测。特别是,通过成功的图像分割网络,U-Net和应用了U-Net的时间序列版本来检测时间序列中的异常段。由于失败的有限发生是在工业物联网系统中的异常检测的普通阻滞剂,还提出了一种转移学习框架来解决数据稀疏问题,包括新的架构,MU-Net,用于将单变量基础模型传输到多变量任务。
U-Net [Ronneberger等,2015]通过在编码层和解码层之间引入架构之间的所谓的跳过通道来改进FCN架构,使得高级功能和低级功能连接以防止信息丢失沿着深度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值