最短路径Dijkstra算法的简单实现

最近刷题一连碰到好几道关于最短路径的问题自己一开始用深搜过了之后也就没怎么 管,但是之后的好几道用深搜都超时,之后查了资料才知道这种最短路径的问题一般使用广搜的方法。

而且实现起来有好几种算法,用的最多的就是Dijkstra和Flody这两种算法,这两者的主要区别就是Dijkstra主要用来解决一个初始化的点到所有其他点的所有最短路径,而Flody主要用来解决确定的两点之间所存在的最短路径,今天就先讲解一下Dijkstra算法

假设有n个点,那么Dijkstra算法会进行n-1次循环,每次循环找出原点到其他另外所有相邻的点中最短的一个点,注意这里必须是相邻的点,之后会将这个点放入原点的集合中,因为已经找到该点的最短路径了,之后再一次循环,之后的循环就不单单是查找之前已经找到的点的相邻点中的最短路径了,而是找到之前集合中所有已经找到最短路径的点的最短相邻点,然后判断并选择出其中最短的路径及其点,重复这种操作,最后就能查找到原点到所有其他的点的最短路径了。

其实这里面还用到了几何知识,就比如说三角形的知识,比如说a到b中间如果一开始直接有一条路我们记作a->b,但是之后经过搜索之后发现能通过另外一个点c到达点b,并且路径长还小于之前的路径长即a->b > a->c->b的。

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.Queue;

public class minpath第二版 {
	public static int n;//存储所有的点
	public static int m;//存储所有的边
	public static int map[][];//存储有向图中的所有有向边
	public static int visit[];//判断每个点是否已经被访问过
	public static int leng[];//最后存储原点到所有其他点的最短路径
	public static void main(String[] args) throws IOException {
		StreamTokenizer in=new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
		PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out));
		in.nextToken();n=(int) in.nval;
		in.nextToken();m=(int) in.nval;
		List<Integer>list1[]=new ArrayList[n];
		for(int i=0;i<n;i++)
			list1[i]=new ArrayList<>();//存储每个点的邻接点
		map=new int [n][n];//初始化每个数组
		visit=new int [n];
		leng=new int [n];
		for(int i=0;i<n;i++)
			visit[i]=0;
		for(int i=0;i<n;i++)//初始化数组并赋值为最大的值,原因是之后肯定会有最短路径与之比较并肯定会将之替换
		{
			leng[i]=Integer.MAX_VALUE;
			for(int j=0;j<n;j++)
			{
				map[i][j]=Integer.MAX_VALUE;
			}
		}
		for(int i=0;i<m;i++)//存入各顶点的相邻结点及其有向路径长
		{
			in.nextToken();int n1=(int) in.nval;
			in.nextToken();int n2=(int) in.nval;
			in.nextToken();int n3=(int) in.nval;
			map[n1-1][n2-1]=n3;
			list1[n1-1].add(n2-1);
		}
		Queue<node>queue=new PriorityQueue<>(compare);//这个优先队列用来存储每次查找出来的最短的最短的点,并将它抛出,所以循环的终止条件是优先队列为空
		queue.add(new node(0,0));
		while(!queue.isEmpty())
		{
			node node1=queue.poll();
			if(visit[node1.x]==0)
			{
				visit[node1.x]=1;
				for(int i=0;i<list1[node1.x].size();i++)//查询抛出点的所有邻接点
				{
					if(map[node1.x][list1[node1.x].get(i)]!=Integer.MAX_VALUE&&visit[list1[node1.x].get(i)]==0)//该邻接点需要不是最大值,就意味着两者之间存在边,并且还没有被访问过
					{
						if(leng[list1[node1.x].get(i)]>node1.length+map[node1.x][list1[node1.x].get(i)])//判断长度是否与之前的路径短,如果短,则替换
						{
							leng[list1[node1.x].get(i)]=node1.length+map[node1.x][list1[node1.x].get(i)];
							queue.add(new node(list1[node1.x].get(i),node1.length+map[node1.x][list1[node1.x].get(i)] ));//加入该点,重复循环
						}
					}
				}
				
			}
		}
		for(int i=1;i<n;i++)
			out.println(leng[i]);
		out.flush();
	}
	static Comparator<node>compare=new Comparator<node>() {//将各个点按长度从小到大排列

		@Override
		public int compare(node o1, node o2) {
			// TODO Auto-generated method stub
			return o1.length-o2.length;
		}
		
	};
	static class node
	{
		int x;
		int length;
		public node(int x,int length) {
			// TODO Auto-generated constructor stub
			this.x=x;
			this.length=length;
		}
	}

}
### 回答1: 最短路径Dijkstra算法是一种用于计算带权有向图中单源最短路径的经典算法。它的基本原理是通过不断更新节点到源节点的距离,从而找到到达目标节点最短的路径。 算法从源节点开始,先将源节点到它的邻接节点的距离初始化为无穷大。然后将源节点到它的邻接节点的距离更新为通过源节点的距离加上源节点到邻接节点的权重。接着,从所有未访问节点中选择距离最小的节点,将该节点标记为已访问,并更新与该节点相邻的节点的距离。重复这个过程,直到所有节点都被访问完毕或没有可更新的距离。最后,就可以得到源节点到所有其他节点的最短路径。 在MATLAB中,可以通过邻接矩阵来实现Dijkstra算法。邻接矩阵是一个二维矩阵,矩阵的每个元素表示两个节点之间的权重。首先,需要初始化一个距离数组,用于存储源节点到其他节点的临时最短路径长度。然后,通过遍历邻接矩阵,将源节点到它的邻接节点的距离初始化为邻接矩阵中对应的权重。接着,再初始化一个标记数组,用于标记节点是否已经被访问过。然后,循环遍历未访问节点,选择距离最小的节点,并将该节点标记为已访问。随后,更新与该节点相邻的节点的距离,如果存在更短的路径。这个过程一直重复,直到所有节点都被访问完毕。最后,通过距离数组就可以得到源节点到其他所有节点的最短路径。 总结来说,最短路径Dijkstra算法能够找到带权有向图中的单源最短路径。在MATLAB中,通过邻接矩阵和相应的数据结构,可以完美地实现这个算法。 ### 回答2: 迪杰斯特拉算法是一种用于求解图上两个节点之间最短路径的经典算法。 其原理如下: 1. 创建一个数组dist[],数组中的元素表示源节点到图中其他顶点的最短距离,开始时将源节点的距离设为0,其他节点的距离设为无穷大。 2. 创建一个集合visited[],用来记录已经找到最短路径的节点。 3. 选择dist[]中距离源节点最近的节点,将其标记为visited,并更新其邻接节点的距离。若经过这个节点到邻接节点的距离比当前记录的距离小,则更新dist[]数组中的距离。 4. 重复第3步,直到所有节点都被标记为visited,或者dist[]中没有未被访问的节点。 5. 最终,dist[]数组中记录了源节点到所有其他节点的最短路径。 在MATLAB中实现迪杰斯特拉算法,可以按照以下步骤进行: 1. 初始化dist[]数组和visited[]数组。 2. 在dist[]数组中将源节点的距离设置为0,其他节点的距离设置为无穷大。 3. 在一个循环中,首先选择dist[]数组中距离源节点最近的节点v,并将其标记为visited。 4. 遍历节点v的所有邻接节点u,如果经过节点v到达节点u的距离比当前记录的距离小,则更新dist[]数组中的距离。 5. 重复步骤3和步骤4,直到所有节点都被标记为visited。 6. 最后,dist[]数组中记录了源节点到其他节点的最短路径。 以上是最短路径迪杰斯特拉算法的原理及在MATLAB中的实现方式。该算法际应用中被广泛使用,用于解决很多网络和路径规划问题。 ### 回答3: Dijkstra算法是一种用于求解带权重图中最短路径算法。它通过计算从起点到各个顶点的最短路径长度,并逐步找到最短路径算法原理如下: 1. 创建一个空的优先队列和一个空的最短路径集合。优先队列用于存放待搜索的顶点,节点的优先级按照到起点的距离从小到大排列。 2. 将起点加入优先队列,并设置距离起点的距离为0。 3. 重复以下步骤,直至优先队列为空: - 从优先队列中取出距离起点最近的顶点v。 - 将顶点v加入最短路径集合中。 - 对于v的所有邻接顶点u,更新u的最短距离,如果经过顶点v到达u的距离小于当前最短距离,则更新最短距离,并将u加入优先队列。 Matlab实现如下: ```matlab function [dist, path] = dijkstra(graph, source) num_nodes = size(graph, 1); dist = inf(1, num_nodes); % 初始化距离数组,设置为正无穷大 dist(source) = 0; % 设置起点的距离为0 visited = false(1, num_nodes); % 记录节点是否被访问过的数组 path = zeros(1, num_nodes); % 记录最短路径的数组 for i = 1:num_nodes % 从未访问的节点中选出距离最小的节点 [~, u] = min(dist.*~visited); visited(u) = true; % 标记该节点为已访问 % 更新与u相邻节点的最短距离 for v = 1:num_nodes if graph(u, v) > 0 && dist(v) > dist(u) + graph(u, v) dist(v) = dist(u) + graph(u, v); path(v) = u; % 更新最短路径 end end end end ``` 以上是Dijkstra算法的简要原理和用Matlab实现的代码。通过该算法,可以得到从起点到其他各个顶点的最短路径距离和路径信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值