各种距离定义与理解

 

1: 马氏距离

http://rogerdhj.blog.sohu.com/39020502.html

Mahalanobis Distance(马氏距离) 

定义:p维空间的两点(两个p维向量x,y)的距离定义为:

并且点x欧氏模数为:

这里很快可以得出,所有到原点距离相等的点满足

这是某个正球体的方程。这就是说观测数据x的各个分量对x至中心的欧式距离贡献是相等的。然而在统计学中我们希望寻求这样一种距离,它的各个分量的作用程度是不同的。差别较大的分量应该接受较小的权重。

然后定义x,y之间的距离

这里

现在x的模数等于

所有到原点等距离的点满足

这是以原点为中心的某个椭球体的方程。

=========================================================================================

马氏距离是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为mu = ( mu_1, mu_2, mu_3, dots , mu_p )^T协方差矩阵Sigma的多变量矢量x = ( x_1, x_2, x_3, dots, x_p )^T,其马氏距离为

D_M(x) = sqrt{(x - mu)^T Sigma^{-1} (x-mu)}

马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为Sigma的随机变量 vec{x} vec{y}的差异程度:

 d(vec{x},vec{y})=sqrt{(vec{x}-vec{y})^TSigma^{-1} (vec{x}-vec{y})}

如果协方差矩阵为单位矩阵,马氏距离就简化为欧式距离;如果协方差矩阵为对角阵,其也可称为正规化的欧氏距离。

 d(vec{x},vec{y})=sqrt{sum_{i=1}^p  {(x_i - y_i)^2 over sigma_i^2}}

其中sigma_ix_i标准差

==========================================================================================

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值