自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(544)
  • 资源 (9)
  • 收藏
  • 关注

转载 Linux中.a、.so和.o文件以及-I,-L,LIBRARY_PATH,LD_LIBRARY_PATH等

(3) 修改/etc/ld.so.conf文件,把库所在的路径加到文件末尾(直接写在文件末尾,不要在路径前加include),并执行ldconfig刷新(ldconfig 命令的用途,主要是在默认搜寻目录(/lib和/usr/lib)以及动态库配置文件/etc/ld.so.conf内所列的目录下,搜索出可共享的动态链接库(格式如前介绍,lib*.so*),进而创建出动态装入程序(ld.so)所需的连接和缓存文件.缓存文件默认为/etc/ld.so.cache,此文件保存已排好序的动态链接库名字列表.)。

2023-08-16 17:14:24 3348

原创 SLAM本质剖析番外-李群李代数的微分和导数

这几个月,博主已经从SLAM算法的使用向着算法的数学推导进行了记录和分享,之前也分享了一文,从现象中解释了李群和李代数表达的含义。但是这还不够,所以这次作者作为SLAM本质剖析的番外,来介绍李群李代数的微分和导数。

2023-01-16 16:10:19 10813 2

转载 undefined symbol问题的查找、定位与解决方法

而这块可以看到fpdf_parse_encrypt是依赖于下边的fx_crypt文件的,再看静态库,fpdf_parse_encrypt被编译成fpdfapi.a,而fx_crypt被编译进pdrm.a静态库,所以应该是fpdfapi.a要依赖于pdrm.a静态库的。ldd命令,可以查看对应的可执行文件或库文件依赖哪些库,但可执行文件或库文件要求与操作系统的编译器类型相同,即电脑是X86的GCC编译器,那么无法通过ldd命令查看ARM交叉编译器编译出来的可执行文件或库文件。

2022-12-14 14:53:39 10202 4

原创 自动驾驶-激光雷达预处理/特征提取

激光雷达作为自动驾驶最常用的传感器,经常需要使用激光雷达来做建图、定位和感知等任务。而这时候使用降低点云规模的预处理方法,可以能够去除无关区域的点以及降低点云规模。并能够给后续的PCL点云分割带来有效的收益。

2022-08-24 21:12:44 4396 2

原创 C++之生成器(builder)模式

0. 简介生成器是一种创建型设计模式, 当构建一个复杂对象时,将构建过程与表示分离。使得同样的过程创建不同的对象。生成器与其他创建型模式不同, 生成器不要求产品拥有通用接口。 这使得用相同的创建过程生成不同的产品成为可能。生成器方法通常支持方法链 (例如 someBuilder->setValueA(1)->setValueB(2)->create() ),来组成复杂的对象。相比于工厂模式专门用于生产一系列相关对象而言,生成器重点关注如何分步生成复杂对象。1. 生成器UML介绍生

2022-03-07 10:38:52 8906 2

原创 C++命名规则&书写规范

常见命名法:匈牙利命名法:基本原则是:变量名=属性+类型+对象描述\color{blue}{变量名=属性+类型+对象描述}变量名=属性+类型+对象描述,其中每一对象的名称都要求有明确含义,可以取对象名字全称或名字的一部分。命名要基于容易记忆容易理解的原则。保证名字的连贯性是非常重要的。Camel命名法:即骆驼式命名法,原因是采用该命名法的名称看起来就像骆驼的驼峰一样高低起伏。Camel命名法有两种形式:混合使用大小写字母和单词之间加下划线\color{blue}{混合使用大小写字母和单词之间加下划线}混

2021-05-12 10:42:19 5722 2

原创 Autoware 软件功能(二)

对应的原版内容在Github这一章会按照Autoware的选项卡的顺序来介绍功能:首先,要启动。

2024-05-27 16:16:34 1022

原创 move base全解

之前我们专门有一节讲到了《主要介绍了MoveBase基类中函数的大概意思以及调用的方式。move_base是ROS下关于机器人路径规划的中心枢纽。它通过订阅激光雷达、map地图、amcl的定位等数据,然后规划出全局和局部路径,再将路径转化为机器人的速度信息,最终实现机器人导航。下面是move_base的整个框架。

2024-05-27 16:14:39 1006

转载 聊聊点云配准---来自无偏估计

看到最后,你或许发现就如同看到了一篇意图再不能明显的推广软文,就差说今天肯德基疯狂星期四了。哈哈。不过鉴于我也掏心掏肺地讲了那么多关于点云配准的所获所得,请原谅我的小私心。另外,很遗憾有一些更好的点云配准方法,我或是没有详细说明,或是陷于篇幅而遗漏。但我相信是金子总要发光的,如果读者想做这方面的研究,一定会按图索骥从而获得更广泛的对该领域的Review。

2024-05-27 11:48:41 393

转载 经典文献阅读之--GRIL‑Calib(无目标IMU‑LiDAR外在校准方法)

LiDAR比其他传感器获取更准确的3D信息,广泛适用于各种机器人应用,例如自我运动估计[1]、定位[2]和地图[3]系统。然而,激光雷达的缺点是当其应用于快速运动时,容易出现运动失真。最近,为了克服这个缺点,LiDAR已与IMU(惯性测量单元)[4]、[5]、[6]结合使用。IMU可以高频测量加速度和角速度,可有效补偿LiDAR的运动失真。精确的外参标定是IMU‑LiDAR融合系统的基本要求。外在标定是指在IMU和LiDAR之间建立空间变换的过程,从而将两个传感器的测量结果统一到一个坐标系[7]。

2024-05-24 14:06:29 396

转载 自监督学习了解

自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。

2024-05-22 18:39:18 446

原创 Autoware内容学习与初步探索(一)

Autoware.AI是世界上第一个用于自动驾驶技术的“All-in-One”开源软件。它ROS1操作系统,并在Apache2.0许可下使用。定位(Localization ):通过结合GNSS和IMU传感器的3D地图和3D地图、SLAM算法来实现定位。检测(Detection ):通过传感器融合算法和深度神经网络使用摄像机和激光雷达完成检测。预测和规划(Prediction and Planning ):基于概率机器人模型和基于规则的系统,部分还使用深度神经网络。

2024-05-14 18:20:26 3219

原创 经典文献阅读之--U-BEV(基于高度感知的鸟瞰图分割和神经地图的重定位)

在这项工作中,我们将。

2024-05-14 18:19:48 2918

原创 Cartographer前后端梳理

最近在研究整个SLAM框架的改进处,想着能不能从Cartographer中找到一些亮点可以用于参考。所以这一篇博客希望能够梳理好Cartographer前后端优化,并从中得到一些启发。carto整体是graph-based框架,前端是scan-map匹配,后端是SPA优化。前端又分为CSM+Ceres两个部分,完成匹配后则会进入子图生成维护中。在子图维护以及优化后放入后端优化,完成全局地图优化和回环检测。下图来自。

2024-05-14 18:19:12 3194

原创 经典文献阅读之--D-Map(无需射线投射的高分辨率激光雷达传感器的占据栅格地图)

单元提取模块从八叉树上按照从最大到最小的尺寸收回未知单元,

2024-05-13 17:00:28 3539

原创 经典文献阅读之--LiDAR-based 4D Occupancy Completion and Forecasting(基于激光雷达的4D占用补全与预测)

阻碍基于占用的感知发展的关键障碍之一是在现实世界中捕获真实占用的困难。虽然激光雷达传感器能够为扫描点提供准确的占用信息,但是密度与成本之间的权衡使得无法获得环境中所有物体和结构的密集占用。此外,由于传感器依赖于光探测和测距,遮挡造成了额外的挑战,特别是在自动驾驶场景中,大量动态物体导致大面积的遮挡。之前的研究[6],[16],[17]提出了一些解决这些挑战的方法。我们在下面的段落中回顾了其中一些方法,并引入了新的方法。

2024-05-13 16:59:36 3529

转载 经典文献阅读之--MAD-ICP(仅由六个参数控制的强大且信息丰富的LiDAR里程计)

激光雷达里程计(LiDAR Odometry)是从连续激光扫描中估计传感器自身运动的任务。这个问题已经得到了研究社区二十多年的关注,如今有许多有效的解决方案可供使用。这些系统中的大多数隐含地依赖于对操作环境、所使用的传感器和运动模式的假设。当这些假设被违反时,许多众所周知的系统往往会表现不佳。本文提出了一种激光雷达里程计系统,能够克服这些限制,在不同的操作条件下良好运行,同时实现与特定领域方法相当的性能。

2024-05-13 16:43:54 2568

转载 TEASER++:快速且可证明的点云配准算法

我们提出了。可证明的算法尝试求解一个困难优化问题(比如带外点的鲁棒估计),提供相对容易的检测条件验证返回的解是否最优(比如,如果算法在外点存在情况下产生最精确的估计)或者界限解的次优性或精确性。为了达到这个目的,我们首先使用,使得估计对大量假对应点不敏感。然后,我们提供一个通用的,这样就可以级联地求解三个变换。尽管每一个子问题仍然是非凸和组合的,但我们证明了(i)通过一个adaptive,(ii)TLS旋转估计可以被松弛为一个,(iii)图理论框架通过。

2024-05-13 14:07:20 765

转载 惯性导航原理与组合导航--武汉大学PPT

http://47.99.158.1/ueditor/jsp/upload/file/20211120/1637411293911014752.pdfhttp://i2nav.com/ueditor/jsp/upload/file/20220419/1650373816368050073.pdf

2024-05-07 15:52:42 2923

原创 ORB-SLAM3如何加入GPS和Wheel轮速约束

对于ORB-SLAM3而言。如何将代码融入Wheel和GPS是一个挺有意思的事情。通过GPS和Wheel可以非常有效的约束视觉里程计结果。Wheel这块主要就是将速度等信息融合到前端中,类似IMU和视觉帧间的关系。而GPS由于频率不是很高,所以基本是用于全局修正的作用。这部分我们经常使用松耦合的形式,当然也有工作去做了紧耦合相关的工作。

2024-05-02 17:40:40 3795

原创 CMakeList整理大全

之前我们也整理过。但是这里面整理的内容其实是不全的。所以我们需要进一步将CMake的使用整理好。以供后面的学习的工程师来检索查询。

2024-04-29 14:41:26 4405

原创 经典文献阅读之--EarlyBird(用于BEV中多视图跟踪的早期融合)

多视角聚合技术有望克服。最近的多视角检测和三维物体检测方法通过将所有视角投影到地面平面上,并在鸟瞰图中进行检测,取得了巨大的性能提升。》研究了在**鸟瞰图中进行跟踪是否也能在多目标多摄像头跟踪中带来下一次性能突破。**目前大多数多视角跟踪方法在每个视角上执行检测和跟踪任务,并使用基于图的方法在每个视角上进行行人关联。这种空间关联已经通过在鸟瞰图中检测每个行人一次来解决,只剩下时间关联的问题。对于时间关联,我们展示了如何为每个检测学习强大的重新识别(re-ID)特征。当前代码也已经在上开源了。

2024-04-29 14:41:08 4326

原创 经典文献阅读之--LTA-OM(长期关联激光雷达惯性SLAM)

同时定位与地图构建(SLAM)技术广泛应用于地面机器人、无人机和自动驾驶汽车。本文介绍了。该系统采用。LTA-OM实现了功能完备,包括环路检测和修正、误报环路闭合拒绝、长期关联地图和多会话定位与地图构建。本文的一个。LTA可以实现更加全局一致的地图构建和无漂移的里程计在重访地点。我们对LTA-OM和其他最先进的激光雷达系统进行了全面的基准测试,使用了18个数据序列。结果表明,LTA-OM在轨迹准确性、地图一致性和时间消耗方面稳定优于其他系统。。此外,设计了多会话模式,允许用户存储当前会话的结果,。

2024-04-29 14:40:34 4668

原创 经典文献阅读之--BALM2(高效且一致的激光雷达点云束调整)

基于点簇,我们推导出了BA优化相对于其决策变量(即激光雷达位姿)的闭式导数(高达二阶)。我们证明了通过点簇可以完全表示所建模的BA优化和闭式导数,而。

2024-04-29 14:39:49 4279

转载 protobuf + VS Code 开发

回看之前的文章,一年多的开发以来,我意识到并非一定要靠某些可视化的行为来完成编译工作。其实proto文件的编译完全可以在命令行完成。因此这个插件更多是进行语法的检查,很遗憾,它做不到。这部分代码在安装插件以后,也不会报错。然而 CLion 下由 Jetbrains 官方开发的 proto 插件却能报出这一错误。不过考虑到我所在的公司也没有像样的工具编写 proto 文件,都是记事本一开了事。其实我也觉得这玩意的语法检查真的无关紧要,VS Code的插件能对关键词着色就已经胜过记事本了。

2024-04-24 14:24:20 3942

转载 经典文献阅读之--DR-LRIO(抗退化LiDAR-Radar-Inertial里程计)

提出的方法是在一个改进型的RMF-Owl平台上进行测试,使用VectorNav VN100 IMU(200 Hz)、Ouster OS0-128激光雷达(10 Hz)和面向前方的德州仪器IWR6843AOP-EVM雷达(10 Hz),其配置如表I所示。传感器通过一个定制设计的基于微控制器的传感器同步工具进行同步,该工具触发IMU和雷达,同时提供一个10 Hz的同步信号,源自1 ppm实时时钟,给激光雷达。DR-LRIO方法的主要优势在于其能够利用雷达对环境的鲁棒感知来补充激光雷达在退化条件下的性能下降。

2024-04-24 14:01:29 3897

原创 图形化编程要怎么做

Scratch其实应该算得上最早做图形化编程的工程了。Scratch 是麻省理工学院的“终身幼儿园团队”在 2007 年 [5]发布的一种图形化编程工具,主要面对全球青少年开放,是图形化编程工具当中最广为人知的一种,所有人都可以在软件中创作自己的程序。而我们就在想是否能做一些工作,让一些复杂的指令集能够通过拖动变成可以被识别的功能呢。我其实在上大学时候就想做类似这样的一个东西。只是一直没有时间,这里作者首先发现了。

2024-04-16 12:59:46 5813

原创 经典文献阅读之--Light-LOAM( 基于图匹配的轻量级激光雷达里程计和地图构建)

预处理、两阶段特征匹配和姿态估计。在预处理阶段,我们首先从每个点云扫描中过滤出不连续的点。为了选择具有微妙局部几何属性的稳定角点和平面特征,我们采用了一种不显眼的选择方法,并过滤掉最显著的角点和平面特征。这是与其他方法[1]、[2]、[5]的一个主要区别。然后进行两阶段的特征匹配过程。在第一阶段,我们采用基于KD树的方法[1]来建立所选特征的初始对应关系。然后,我们引入了基于图的一致性投票机制来评估这些对应关系,有效地过滤掉不可靠的关联。

2024-04-16 12:59:13 5615

原创 经典文献阅读之--mlcc(多激光雷达与相机外参标定)

令ABTABRABt∈SE3AB​TAB​RAB​t∈SE3表示从A坐标系到B坐标系的刚体变换,其中ABR∈SO3AB​R∈SO3和ABt∈R3AB​t∈R3分别表示旋转和平移。我们用LL0L1⋅⋅⋅Ln−1LL0​L1​,⋅⋅⋅,Ln−1​表示nnn个激光雷达的集合,其中L0L_0L0​表示基准激光雷达,CC0C1⋅⋅。

2024-04-16 12:58:46 5849

原创 经典文献阅读之--RaLF(激光雷达地图中基于流的全局和度量雷达定位)

激光雷达地图中基于流的全局和度量雷达定位。自主机器人的定位是至关重要的。尽管基于相机和激光雷达的方法已经得到大量研究,但是它们会受到恶劣的光照和天气条件的影响。因此,最近雷达传感器由于其对这种条件固有的鲁棒性而受到关注。在《》中,我们提出了RaLF,这是一种。。我们通过跨模态度量学习来学习两种模态之间的共享嵌入空间,从而解决位置识别任务。此外,我们通过预测将查询雷达扫描与激光雷达地图对齐的像素级流向量来执行度量定位。

2024-04-16 12:57:41 5869

原创 经典文献阅读之--A Survey on Generative Diffusion Models(扩散模型最新综述)

本文综述了深度生成模型,特别是扩散模型(Diffusion model),如何赋予机器类似人类的想象力。扩散模型在生成逼真样本方面显示出巨大潜力,克服了变分自编码器中的后分布对齐障碍,缓解了生成对抗网络中的对抗性目标不稳定性。扩散模型包括两个相互连接的过程:一个将和一个。前向过程类似于具有时变系数的简单布朗运动。神经网络通过使用去噪评分匹配目标来训练估计得分函数。在前向扩散阶段,图像被逐渐引入的噪声污染,直到图像成为完全随机噪声。

2024-04-16 12:55:15 5839

原创 经典文献阅读之--LESS-Map(长期定位轻量级和逐渐演进的语义地图方案)

我们利用四个环视鱼眼摄像头、惯性测量单元(IMU)和轮子编码器来捕捉周围环境并估计车辆的轨迹。所提出的算法包括两个主要组成部分:建图和定位,如图2所示。图2. 提出算法的概述。我们利用四个周围摄像头提取准确的参数化地面特征。系统主要分为两个部分。第一个(左侧)部分是建图部分,当首次访问环境时,它创建一个全局地图。第二个(右侧)部分是定位和地图更新部分,它进行定位并使用新捕获的环境数据更新先前的地图。建图:当车辆首次进入环境时,一个基本任务是构建一个全局地图,作为后续定位和地图更新的基础。

2024-04-09 10:24:15 5874

原创 经典文献阅读之--i-Octree(用于最近邻搜索的快速、轻量级和动态的八叉树)

随后,i-Octree便能通过KNN搜索或半径邻居搜索,建立新到达数据与历史数据之间的对应关系。基于这些对应关系,可以估算新数据的姿态,并将带有姿态的3D点添加到i-Octree中。

2024-04-03 17:55:19 5755

原创 如何插入LinK3D、CSF、BALM来直接插入各个SLAM框架中

LinK3D、CSF、BALM这几个都是非常方便去插入到激光SLAM框架的。这里我们会分别从多个角度来介绍如何将每个框架插入到SLAM框架中。

2024-04-03 17:54:50 5725

原创 经典文献阅读之--als_ros(移动机器人的可靠蒙特卡罗定位)

在本文中,我们关注移动机器人定位的可靠性问题。蒙特卡罗定位(MCL)广泛用于移动机器人的定位。然而,由于缺乏判定MCL估计可靠性的方法,其安全性仍难以保证。本文提出了一种新型定位框架,。该方法的实现方式与MCL的估计方式相似。;然而,不可预见的错误仍可能导致定位失败。该方法还包括一个。此外,该方法可以无缝集成全局定位方法,通过重要性采样实现。因此,可以在减少全局定位噪声影响的同时,实现从失败状态的快速重新定位。我们使用装备有2D激光雷达的轮式移动机器人进行了三种类型的实验。

2024-04-02 09:46:28 5885

原创 经典文献阅读之--MV-Map(具有多视图一致性的非车载高精度地图生成)

局部的高精地图现在在自驾领域越来越受到关注,鸟瞰图(BEV)感知模型可以用于通过更少的人力构建高精度地图(HD-Maps)。虽然在线的局部地图推算是非常有必要的,但是它们的结果通常不可靠,并且表明从不同视角预测的高精度地图存在明显的不一致性。这是因为BEV感知通常是以“车载”方式设置的,其计算资源有限,这阻碍了算法同时推断多个视图。》通过一种更实用的“非车载”高精度地图生成方式,以消除计算限制。

2024-03-25 10:03:45 6410

原创 机器人&自动驾驶时间同步进阶

之前时间同步也写过一篇文章介绍。在最近的学习中发现一些额外需要阐述学习的内容,这里就再次写一些之前没写到的内容。

2024-03-25 09:57:01 6449

原创 常用传感器指标以及性能

对于传感器选型,很多新手乃至工程师也不太清楚,不同价位以及不同设备之间的区别。这里作者想根据自己的一些经验,以及网上的一些资料,给各位读者提供一些建议,以及这些设备要怎么去使用。

2024-03-25 09:55:12 6546

原创 经典文献阅读之--VICET(激光雷达运动畸变校正)

其中包括参考点。

2024-03-25 09:54:39 6535

原创 经典文献阅读之--HBA(大规模LiDAR一致性建图BA)

我们提出的方法的系统工作流程如图2所示。输入是每个LiDAR扫描的原始或校正后的点云以及它们在全局坐标系中的初始估计姿态,这些姿态可以从通用的LiDAR里程计或同时定位和建图(SLAM)算法中获得。该方法包括两个过程,自下而上(见第3节)和自上而下(见第4节),直到收敛为止。在自下而上的过程中,对较小的局部窗口内的LiDAR帧进行局部BA,从第一层到第二层构建关键帧(见图1)。这个过程按层次进行,直到满足最佳层数,并对顶层关键帧进行全局BA。然后,使用来自每个优化层和相邻层之间的因素构建姿态图(见图1)。

2024-03-22 10:36:48 6866

各学科重要国际学术会议目录.pdf

各学科重要国际学术会议目录,可以知道自己所投会议影响力

2022-01-07

ROS 导航功能调优指南∗.pdf

ROS 导航功能包用于实现移动机器人可靠移动。ROS 导航功能包通过处理里程数据、传 感器数据和环境地图数据,为机器人运动生成一条安全的路径。最大限度地优化导航功能包 的性能需要对相关参数进行调整,且调参这项工作并不像表面上的那么简单。对其中的概念和推理不熟悉的人很大概率会采用随机尝试的策略,无形中浪费了大量时间。

2022-01-07

ROS2相关资源.pdf

一本ROS2相关的资料整合,非常适合初学者学习

2022-01-07

ROS_One.zip

ROS QT交互软件,打开即用

2021-04-13

占据栅格地图构建分享.zip

Gmapping的地图构建部分

2021-04-12

kuka代码.zip

基于ros的KUKA iiwa700机器人控制操作,已提供说明文档,有问题可以咨询

2021-02-26

机械臂项目kuka_iiwa.zip

本资源主要是KUKA_iiwa强化学习仿真,利用强化学习实现机械臂的抓取,并附有详细的代码注释。

2020-04-30

小觅摄像头Opencv处理

小觅摄像头Opencv处理,https://blog.csdn.net/lovely_yoshino/article/details/94859666实现过程

2019-07-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除