基础知识大全(LATEX,三角函数变换,矩阵,SLAM)

1. LATEX

1.1 常用字母

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 常用数组

在这里插入图片描述

1.3 LaTex常用的数学字体

正常字体:\mathnormal{} --> normal
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathnormal{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathnormal{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

罗马体:\mathrm{} --> roman
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathrm{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathrm{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

斜体:\mathit{} --> italic
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathit{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathit{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

黑粗体:\mathbf{} --> boldface
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathbf{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathbf{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

黑板体(空心体):\mathbb{} --> blackboard
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathbb{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathbb{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

书法艺术体:\mathcal{} --> calligraphy
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathcal{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathcal{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

书写体:\mathscr{} --> script
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathscr{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathscr{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

德文尖角体(哥特体):\mathfrak{} --> fraktur (aka gothic)
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathfrak{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathfrak{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

无衬线体:\mathsf{} --> sans serif
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathsf{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathsf{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

打字机体:\mathtt{} --> typewriter type
  • 大写: A , B , C , D , E , F , Z , H , I , J , K , L , M , N , O , P , Q , R , S , T , U , V , W , X , Y , Z \mathtt{A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z} A,B,C,D,E,F,Z,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

  • 小写: a , b , c , d , e , f , g , h , i , j , k , l , l , n , o , p , q , r , s , t , u , v , w , x , y , z \mathtt{a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z} a,b,c,d,e,f,g,h,i,j,k,l,l,n,o,p,q,r,s,t,u,v,w,x,y,z

2. 三角变换公式

在这里插入图片描述
在这里插入图片描述

行内与独行
  1. 行内公式:将公式插入到本行内,符号:$公式内容$,如: x y z xyz xyz
  2. 独行公式:将公式插入到新的一行内,并且居中,符号:$$公式内容$$,如: x y z xyz xyz
上标、下标与组合
  1. 上标符号,符号:^,如: x 4 x^4 x4
  2. 下标符号,符号:_,如: x 1 x_1 x1​
  3. 组合符号,符号:{},如: 16 8 O 2 + 2 {16}_{8}O{2+}_{2} 168​O2+2​
汉字、字体与格式
  1. 汉字形式,符号:\mbox{},如:KaTeX parse error: Undefined control sequence: \mbox at position 4: V_{\̲m̲b̲o̲x̲{初始}}
  2. 字体控制,符号:\displaystyle,如: x + y y + z \displaystyle \frac{x+y}{y+z} y+zx+y​
  3. 下划线符号,符号:\underline,如: x + y ‾ \underline{x+y} x+y​
  4. 标签,符号\tag{数字},如:KaTeX parse error: \tag works only in display equations
  5. 上大括号,符号:\overbrace{算式},如: a + b + c + d ⏞ 2.0 \overbrace{a+b+c+d}^{2.0} a+b+c+d ​2.0​
  6. 下大括号,符号:\underbrace{算式},如: a + b + c ⏟ 1.0 + d a+\underbrace{b+c}_{1.0}+d a+1.0 b+c​​+d
  7. 上位符号,符号:\stacrel{上位符号}{基位符号},如: x ⃗ = d e f x 1 , … , x n \vec{x}\stackrel{\mathrm{def}}{=}{x_1,\dots,x_n} x =defx1​,…,xn​
占位符
  1. 两个quad空格,符号:\qquad,如: x y x \qquad y xy
  2. quad空格,符号:\quad,如: x y x \quad y xy
  3. 大空格,符号\,如: x y x \ y x y
  4. 中空格,符号\:,如: x : y x : y x:y
  5. 小空格,符号\,,如: x , y x , y x,y
  6. 没有空格,符号``,如: x y xy xy
  7. 紧贴,符号 \!,如: x ! y x ! y x!y
定界符与组合
  1. 括号,符号:()\big(\big) \Big(\Big) \bigg(\bigg) \Bigg(\Bigg),如: ( ) ( ) ( ) ( ) ( ) ()\big(\big) \Big(\Big) \bigg(\bigg) \Bigg(\Bigg) ()()()()()
  2. 中括号,符号:[],如: [ x + y ] [x+y] [x+y]
  3. 大括号,符号:\{ \},如: x + y {x+y} x+y
  4. 自适应括号,符号:\left \right,如: ( x ) \left(x\right) (x), ( x y z ) \left(x{yz}\right) (xyz)
  5. 组合公式,符号:{上位公式 \choose 下位公式},如: ( n + 1 k ) = ( n k ) + ( n k − 1 ) {n+1 \choose k}={n \choose k}+{n \choose k-1} (kn+1​)=(kn​)+(k−1n​)
  6. 组合公式,符号:{上位公式 \atop 下位公式},如: ∑ k 0 , k 1 , … > 0 k 0 + k 1 + ⋯ = n A k 0 A k 1 ⋯ \sum_{k_0,k_1,\ldots>0 \atop k_0+k_1+\cdots=n}A_{k_0}A_{k_1}\cdots ∑k0​+k1​+⋯=nk0​,k1​,…>0​​Ak0​​Ak1​​⋯
四则运算
  1. 加法运算,符号:+,如: x + y = z x+y=z x+y=z
  2. 减法运算,符号:-,如: x − y = z x-y=z x−y=z
  3. 加减运算,符号:\pm,如: x ± y = z x \pm y=z x±y=z
  4. 减甲运算,符号:\mp,如: x ∓ y = z x \mp y=z x∓y=z
  5. 乘法运算,符号:\times,如: x × y = z x \times y=z x×y=z
  6. 点乘运算,符号:\cdot,如: x ⋅ y = z x \cdot y=z x⋅y=z
  7. 星乘运算,符号:\ast,如: x ∗ y = z x \ast y=z x∗y=z
  8. 除法运算,符号:\div,如: x ÷ y = z x \div y=z x÷y=z
  9. 斜法运算,符号:/,如: x / y = z x/y=z x/y=z
  10. 分式表示,符号:\frac{分子}{分母},如: x + y y + z \frac{x+y}{y+z} y+zx+y​
  11. 分式表示,符号:{分子} \voer {分母},如: x + y y + z {x+y} \over {y+z} y+zx+y​
  12. 绝对值表示,符号:||,如: ∣ x + y ∣ |x+y| ∣x+y∣
高级运算
  1. 平均数运算,符号:\overline{算式},如: x y z ‾ \overline{xyz} xyz​
  2. 开二次方运算,符号:\sqrt,如: x \sqrt x x ​
  3. 开方运算,符号:\sqrt[开方数]{被开方数},如: x + y 3 \sqrt[3]{x+y} 3x+y ​
  4. 对数运算,符号:\log,如: log ⁡ ( x ) \log(x) log(x)
  5. 极限运算,符号:\lim,如: lim ⁡ y → 0 x → ∞ x y \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} limy→0x→∞​yx​
  6. 极限运算,符号:\displaystyle \lim,如: lim ⁡ y → 0 x → ∞ x y \displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} y→0limx→∞​yx​
  7. 求和运算,符号:\sum,如: ∑ y → 0 x → ∞ x y \sum^{x \to \infty}_{y \to 0}{\frac{x}{y}} ∑y→0x→∞​yx​
  8. 求和运算,符号:\displaystyle \sum,如: ∑ y → 0 x → ∞ x y \displaystyle \sum^{x \to \infty}_{y \to 0}{\frac{x}{y}} y→0∑x→∞​yx​
  9. 积分运算,符号:\int,如: ∫ 0 ∞ x d x \int^{\infty}_{0}{xdx} ∫0∞​xdx
  10. 积分运算,符号:\displaystyle \int,如: ∫ 0 ∞ x d x \displaystyle \int^{\infty}_{0}{xdx} ∫0∞​xdx
  11. 微分运算,符号:\partial,如: ∂ x ∂ y \frac{\partial x}{\partial y} ∂y∂x​
  12. 矩阵表示,符号:\begin{matrix} \end{matrix},如:KaTeX parse error: Undefined control sequence: \5 at position 38: …1 &2 &\cdots &4\̲5̲ &6 &\cdots &8\…
逻辑运算
  1. 等于运算,符号:=,如: x + y = z x+y=z x+y=z
  2. 大于运算,符号:>,如: x + y > z x+y>z x+y>z
  3. 小于运算,符号:<,如: x + y < z x+y<z x+y<z
  4. 大于等于运算,符号:\geq,如: x + y ≥ z x+y \geq z x+y≥z
  5. 小于等于运算,符号:\leq,如: x + y ≤ z x+y \leq z x+y≤z
  6. 不等于运算,符号:\neq,如: x + y ≠ z x+y \neq z x+y​=z
  7. 不大于等于运算,符号:\ngeq,如: x + y ≱ z x+y \ngeq z x+y≱z
  8. 不大于等于运算,符号:\not\geq,如: x + y ≱ z x+y \not\geq z x+y​≥z
  9. 不小于等于运算,符号:\nleq,如: x + y ≰ z x+y \nleq z x+y≰z
  10. 不小于等于运算,符号:\not\leq,如: x + y ≰ z x+y \not\leq z x+y​≤z
  11. 约等于运算,符号:\approx,如: x + y ≈ z x+y \approx z x+y≈z
  12. 恒定等于运算,符号:\equiv,如: x + y ≡ z x+y \equiv z x+y≡z
集合运算
  1. 属于运算,符号:\in,如: x ∈ y x \in y x∈y
  2. 不属于运算,符号:\notin,如: x ∉ y x \notin y x∈/​y
  3. 不属于运算,符号:\not\in,如: x ∉ y x \not\in y x​∈y
  4. 子集运算,符号:\subset,如: x ⊂ y x \subset y x⊂y
  5. 子集运算,符号:\supset,如: x ⊃ y x \supset y x⊃y
  6. 真子集运算,符号:\subseteq,如: x ⊆ y x \subseteq y x⊆y
  7. 非真子集运算,符号:\subsetneq,如: x ⊊ y x \subsetneq y x⊊y
  8. 真子集运算,符号:\supseteq,如: x ⊇ y x \supseteq y x⊇y
  9. 非真子集运算,符号:\supsetneq,如: x ⊋ y x \supsetneq y x⊋y
  10. 非子集运算,符号:\not\subset,如: x ⊄ y x \not\subset y x​⊂y
  11. 非子集运算,符号:\not\supset,如: x ⊅ y x \not\supset y x​⊃y
  12. 并集运算,符号:\cup,如: x ∪ y x \cup y x∪y
  13. 交集运算,符号:\cap,如: x ∩ y x \cap y x∩y
  14. 差集运算,符号:\setminus,如: x ∖ y x \setminus y x∖y
  15. 同或运算,符号:\bigodot,如: x ⨀ y x \bigodot y x⨀y
  16. 同与运算,符号:\bigotimes,如: x ⨂ y x \bigotimes y x⨂y
  17. 实数集合,符号:\mathbb{R},如:\mathbb{R}
  18. 自然数集合,符号:\mathbb{Z},如:\mathbb{Z}
  19. 空集,符号:\emptyset,如: ∅ \emptyset ∅
数学符号
  1. 无穷,符号:\infty,如: ∞ \infty ∞
  2. 虚数,符号:\imath,如: ı \imath ı
  3. 虚数,符号:\jmath,如: ȷ \jmath ȷ
  4. 数学符号,符号\hat{a},如: a ^ \hat{a} a^
  5. 数学符号,符号\check{a},如: a ˇ \check{a} aˇ
  6. 数学符号,符号\breve{a},如: a ˘ \breve{a} a˘
  7. 数学符号,符号\tilde{a},如: a ~ \tilde{a} a~
  8. 数学符号,符号\bar{a},如: a ˉ \bar{a} aˉ
  9. 矢量符号,符号\vec{a},如: a ⃗ \vec{a} a
  10. 数学符号,符号\acute{a},如: a ˊ \acute{a} aˊ
  11. 数学符号,符号\grave{a},如: a ˋ \grave{a} aˋ
  12. 数学符号,符号\mathring{a},如: a ˚ \mathring{a} a˚
  13. 一阶导数符号,符号\dot{a},如: a ˙ \dot{a} a˙
  14. 二阶导数符号,符号\ddot{a},如: a ¨ \ddot{a} a¨
  15. 上箭头,符号:\uparrow,如: ↑ \uparrow ↑
  16. 上箭头,符号:\Uparrow,如: ⇑ \Uparrow ⇑
  17. 下箭头,符号:\downarrow,如: ↓ \downarrow ↓
  18. 下箭头,符号:\Downarrow,如: ⇓ \Downarrow ⇓
  19. 左箭头,符号:\leftarrow,如: ← \leftarrow ←
  20. 左箭头,符号:\Leftarrow,如: ⇐ \Leftarrow ⇐
  21. 右箭头,符号:\rightarrow,如: → \rightarrow →
  22. 右箭头,符号:\Rightarrow,如: ⇒ \Rightarrow ⇒
  23. 底端对齐的省略号,符号:\ldots,如: 1 , 2 , … , n 1,2,\ldots,n 1,2,…,n
  24. 中线对齐的省略号,符号:\cdots,如: x 1 2 + x 2 2 + ⋯ + x n 2 x_1^2 + x_2^2 + \cdots + x_n^2 x12​+x22​+⋯+xn2​
  25. 竖直对齐的省略号,符号:\vdots,如: ⋮ \vdots ⋮
  26. 斜对齐的省略号,符号:\ddots,如: ⋱ \ddots ⋱
希腊字母
字母实现字母实现
AAα\alhpa
BBβ\beta
Γ\Gammaγ\gamma
Δ\Deltaδ\delta
EEϵ\epsilon
ZZζ\zeta
HHη\eta
Θ\Thetaθ\theta
IIι\iota
KKκ\kappa
Λ\Lambdaλ\lambda
MMμ\mu
NNν\nu
Ξ\Xiξ\xi
OOο\omicron
Π\Piπ\pi
PPρ\rho
Σ\Sigmaσ\sigma
TTτ\tau
Υ\Upsilonυ\upsilon
Φ\Phiϕ\phi
XXχ\chi
Ψ\Psiψ\psi
Ω\vω\omega

3. 线性代数知识

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4. 反对称矩阵

反对称矩阵又称(斜对称矩阵)是一个方形矩阵,其转置矩阵和自身的加法逆元相等。
A t o p = − A (1.1) A^{\\top} = -A \tag{1.1} Atop=A(1.1)
或写作 A = ( a i j ) A=(a_{ij}) A=(aij),各元素的关系为:
a i j = − a j i (1.2) a_{ij} = -a_{ji} \tag{1.2} aij=aji(1.2)
例如,下例为一个反对称矩阵:
[ 0 2 − 1 − 2 0 − 4 1 4 0 ] (1.3) \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & -4 \\ 1 & 4 & 0 \\ \end{bmatrix} \tag{1.3} 021204140 (1.3)
在SLAM学习中,一个向量可以映射到一个反对称矩阵,从向量到反对称矩阵的映射符号通常用 ^ \hat{} ^ 符号来表示,比如对于向量 a = [ a 1 , a 2 , a 3 ] ⊤ a = [a_1,a_2,a_3]^{\top} a=[a1,a2,a3],其反对称矩阵为:
a ∧ = A = [ 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ] (1.4) a^{\wedge}=A= \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \\ \end{bmatrix} \tag{1.4} a=A= 0a3a2a30a1a2a10 (1.4)
另外一个小tips,反对称符号在latex的表示为\hat{}或者\wedge

4.​2. 反对称矩阵与叉乘

设有向量 a = [ a 1 , a 2 , a 3 ] ⊤ a = [a_1,a_2,a_3]^\top a=[a1,a2,a3] b = [ b 1 , b 2 , b 3 ] ⊤ b = [b_1,b_2,b_3]\top b=[b1,b2,b3],则叉乘和反对称化的关系如下:
a × b = a ∧ b (2.1) a \times b = a^\wedge b \tag{2.1} a×b=ab(2.1)
以及反交换律:
a ∧ b = − b ∧ a (2.2) a^\wedge b = -b^\wedge a \tag{2.2} ab=ba(2.2)
a ⊤ b ∧ = − b ⊤ a ∧ (2.3) a^\top b^\wedge = -b^\top a^\wedge \tag{2.3} ab=ba(2.3)
同时有以下性质成立:
( a ∧ b ) ∧ = ( a × b ) ∧ = a ∧ b ∧ − b ∧ a ∧ (2.4) (a^\wedge b)^\wedge = (a \times b)^\wedge = a^\wedge b^\wedge - b^\wedge a^\wedge \tag{2.4} (ab)=(a×b)=abba(2.4)

4.3 反对称矩阵的行列式

若A是 n × n n \times n n×n的反对称矩阵,其行列式满足:
d e t ( A ) = d e t ( A ⊤ ) = d e t ( − A ) = ( − 1 ) n d e t ( A ) (3.1) det(A) = det(A^\top)=det(-A)=(-1)^ndet(A) \tag{3.1} det(A)=det(A)=det(A)=(1)ndet(A)(3.1)

  • 如果n是奇数,行列式等于0。这个结果叫雅克比定理。
  • 若n是偶数,行列式可以写成部分元素的多项式的平方,这个称为Pfaffian行列式。

4.4 反对称矩阵的乘法

4.4.1 反对称矩阵连乘

假设向量 a = [ a 1 , a 2 , a 3 ] ⊤ a = [a_1,a_2,a_3]^\top a=[a1,a2,a3],其为单位向量,即 a 1 2 + a 2 2 + a 3 2 = 1 \sqrt{a^2_1 + a^2_2 + a^2_3} = 1 a12+a22+a32 =1,则易推出:
a ∧ a ∧ = a a ⊤ − I (4.1) a^\wedge a^\wedge = aa^\top - I \tag{4.1} aa=aaI(4.1)
继续连乘:
a ∧ a ∧ a ∧ = − a ∧ (4.2) a^\wedge a^\wedge a^\wedge = -a^\wedge \tag{4.2} aaa=a(4.2)
更多的连乘可以用以上规律进行推导。
在这里插入图片描述

4.4.2 反对称矩阵与矩阵相乘

定义向量 u = ( u 1 , u 2 , u 3 ) ⊤ u = (u_1, u_2, u_3)^\top u=(u1,u2,u3)和任意矩阵C,则有如下公式成立:
( C u ) ∧ = C u ∧ C ⊤ (4.3) (Cu)^\wedge = Cu^\wedge C^\top \tag{4.3} (Cu)=CuC(4.3)

4.5 反对称矩阵的加法

设有向量 a = [ a 1 , a 2 , a 3 ] ⊤ a = [a_1,a_2,a_3]^\top a=[a1,a2,a3] b = [ b 1 , b 2 , b 3 ] ⊤ b = [b_1,b_2,b_3]\top b=[b1,b2,b3],则有运算:
a ∧ + b ∧ = ( a + b ) ∧ (5.1) a^\wedge + b^\wedge = (a+b)^\wedge \tag{5.1} a+b=(a+b)(5.1)

4.6 无穷小旋转

斜对称矩阵形成了正交群O(n)在单位矩阵的切空间。在某种意义上,斜对称矩阵可以视无穷小旋转
另外一种说法是,斜对称矩阵的空间形成了李群O(n)的李代数o(n)。这个空间上的李括号由交换子给出:
[ A , B ] = A B − B A (6.1) [A,B] = AB -BA \tag{6.1} [A,B]=ABBA(6.1)
很容易验证,两个斜对称矩阵的交换子也是斜对称的。
于是,斜对称矩阵A矩阵指数,是正交矩阵R
R = e x p ( A ) = ∑ n = 0 ∞ A n n ! (6.2) R =exp(A) = \sum^\infty_{n=0} \frac{A^n}{n!} \tag{6.2} R=exp(A)=n=0n!An(6.2)
李代数的指数映射的像总是位于含有单位元的李群的连通分支内。在李群O(n)的情况中,这个连通分支是特殊正交群SO(n),由所有行列式为1的正交矩阵组成。因此 _ R _ = e x p ( _ A _ ) \_R\_ = exp(\_A\_) _R_=exp(_A_)的行列式为+1。于是,每一个行列式为1的正交矩阵都可以写成某个斜对称矩阵的指数。

5. SLAM中常用的矩阵变换

5.1 行矩阵、列矩阵

m × n m×n m×n阶矩阵中, m = 1 m=1 m=1称为行矩阵,也称为 n n n维行向量; n = 1 n=1 n=1称为列矩阵,也称为 m m m维列向量。

5.2 矩阵的转置

假设A和B是两个 m × n m \times n m×n的矩阵, λ \lambda λ是一个常数,有:

  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A B ) T = B T A T , ( A B ) − 1 = B − 1 A − 1 (AB)^{T} = B^{T}A^T,(AB)^{-1} = B^{-1}A^{-1} (AB)T=BTAT,(AB)1=B1A1
  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  • ( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
  • ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}= (A^{-1})^T (AT)1=(A1)T

对转置矩阵求导 :
d x T d x = I \frac{dx^T}{dx}= I dxdxT=I
( A x ) T d x = A T \frac{(Ax)^T}{dx}= A^T dx(Ax)T=AT

5.3 奇异矩阵

奇异矩阵和非奇异矩阵首先是方阵,其次奇异矩阵的秩不是满秩,即 ∣ A ∣ = 0 |A|=0 A=0

5.4 对称矩阵与反对称矩阵

A A A n n n阶方阵,如果 A T = A A^T=A AT=A,则称 A A A是对称矩阵。如果 A T = − A A^T=-A AT=A,则称 A A A为反对称矩阵。反对称矩阵中,主对角线上的元素均为0。

  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

5.5 正定矩阵

正定矩阵

  • 广义定义: 设 M M M n n n阶方阵,如果对任何非零向量 z z z,都有 z T M z > 0 z^TMz>0 zTMz>0,就称M为正定矩阵
  • 性质:
  1. 正定矩阵的行列式恒为正
  2. A A A是正定矩阵,则 A T A^T AT也是正定矩阵
  3. 两个正定矩阵的和是正定矩阵
  4. 正实数与正定矩阵的乘积是正定矩阵
  5. 正定矩阵的特征值均为正
  6. 正定矩阵存在实可逆矩阵l,使得 A = l T l A=l^Tl A=lTl
  7. 正定矩阵存在秩为 m x n mxn mxn的实矩阵 l l l,使得 A = l T l A=l^Tl A=lTl
  8. 正定矩阵存在主对角元素全为正的实三角元素R,使得 A = l T l A=l^Tl A=lTl

M M M为正定矩阵 < = > x T M x > 0 <=> x^TMx > 0 <=>xTMx>0for all x ∈ R n x \in \mathbb R^n xRn
M M M为半正定矩阵 < = > x T M x ⩾ 0 <=> x^TMx \geqslant 0 <=>xTMx0for all x ∈ R n x \in \mathbb R^n xRn

5.5.1 对称正定矩阵

A ∈ R n × n A \in R^ {n\times n} ARn×n,若 A = A T A=A^T A=AT,对任意 0 ≠ X ∈ R n 0\not=X \in R^n 0=XRn,都有 X T A X > 0 X^TAX>0 XTAX>0,则称A为对称正定矩阵

5.6 实对称矩阵

实对称矩阵是一个方阵,其转置等于自身的矩阵。换句话说,如果一个矩阵 A A A 满足 A = A ⊤ A = A^\top A=A,那么它就是实对称矩阵。

  1. 特征值分解
    对于实对称矩阵 (A),可以通过特征值分解得到:
    [
    A = Q \Lambda Q^\top
    ]
    其中,(Q) 是正交矩阵,列向量是 (A) 的特征向量,(\Lambda) 是对角矩阵,对角线上的元素是 (A) 的特征值。

  2. 特征值的性质

    • 实对称矩阵的特征值都是实数。
    • 实对称矩阵的特征值互不相同(可以有重复的特征值,但对应的特征向量不同)。
  3. 正交性质
    实对称矩阵的特征向量相互正交。也就是说,如果 A A A 的特征向量 v i v_i vi v j v_j vj 对应的特征值不同(或者重复但线性无关),则它们正交。

  4. 谱范数
    实对称矩阵的谱范数等于最大特征值的绝对值。即,如果 A A A 的特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1, \lambda_2, ..., \lambda_n λ1,λ2,...,λn,则
    ∣ ∣ A ∣ ∣ 2 = max ⁡ i ∣ λ i ∣ ||A||_2 = \max_{i} |\lambda_i| ∣∣A2=maxiλi

  5. 对角化
    实对称矩阵可以通过正交相似变换对角化。具体而言,如果 A A A 是一个 n × n n \times n n×n 的实对称矩阵,那么存在一个正交矩阵 P P P,使得 P ⊤ A P P^\top A P PAP 是一个对角矩阵。

  6. 特殊矩阵形式
    实对称矩阵的一些特殊形式也有其特定的性质和公式,例如三对角矩阵、对角占优矩阵等。

5.7 伴随矩阵

设矩阵 A A A中, A i j A_{ij} Aij为行列式 ∣ A ∣ |A| A中元素 a i j a_{ij} aij的代数余子式,称 A ∗ A^* A为矩阵 A A A的伴随矩阵。

  • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
  • ( A ∗ ) T = ( A T ) ∗ , ( k A ) ∗ = k n − 1 A ∗ (A^*)^T=(A^T)^*, (kA)^*=k^{n-1}A^* (A)T=(AT),(kA)=kn1A

A A A可逆:

  • A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1
  • ( A ∗ ) − 1 = ( A − 1 ) ∗ = ∣ A ∣ − 1 A (A^*)^{-1}=(A^{-1})^*=|A|^{-1}A (A)1=(A1)=A1A
  • ( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA
  • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

5.8 正交阵

正交可以理解为垂直

正交阵是指满足 A A T = E AA^T=E AAT=E或者 A T A = E A^T A=E ATA=E n n n阶方阵 A A A,其中 E E E为n阶单位阵。
$ A A T = [ α _ 1 α 2 . . . α n ] [ α 1 T α 2 T . . . α n T ] = [ α 1 α 1 T α 1 α 2 T . . . α 1 α n T α 2 α 1 T α 2 α 2 T . . . α 2 α n T . . . α n α 1 T α n α 2 T . . . α n α n T ] = [ 1 0 . . . 0 0 1 . . . 0 . . . 0 0 . . . 1 ] = E AA^T = \begin{bmatrix} \alpha\_1\\ \alpha_2\\ .\\ .\\ .\\ \alpha_n\\ \end{bmatrix}\begin{bmatrix} \alpha_1^T && \alpha_2^T && ... && \alpha_n^T \end{bmatrix} =\begin{bmatrix} \alpha_1 \alpha_1^T && \alpha_1 \alpha_2^T && ... && \alpha_1 \alpha_n^T\\ \alpha_2 \alpha_1^T && \alpha_2 \alpha_2^T && ... && \alpha_2 \alpha_n^T\\ .\\ .\\ .\\ \alpha_n \alpha_1^T && \alpha_n \alpha_2^T && ... && \alpha_n \alpha_n^T\\ \end{bmatrix} =\begin{bmatrix} 1&& 0 && ... && 0\\ 0 && 1 && ... && 0\\ .\\ .\\ .\\ 0 && 0 && ... && 1\\ \end{bmatrix} = E AAT= α_1α2...αn [α1Tα2T...αnT]= α1α1Tα2α1T...αnα1Tα1α2Tα2α2Tαnα2T.........α1αnTα2αnTαnαnT = 10...0010.........001 =E

如果矩阵的各列向量都是单位向量,并且两两正交。那么就说这个矩阵是正交矩阵。

  • 性质:
    设A是n阶正交阵,则
  1. A T = A − 1 A^T = A^{-1} AT=A1
  2. A T A = A A T = E A^TA=AA^T=E ATA=AAT=E E E E n n n阶单位阵);
  3. A A A是正交阵,则 A T A^T AT A − 1 A^{-1} A1亦是正交阵;
  4. A 、 B A、B AB是正交阵,则 A B AB AB亦是正交阵;
  5. ∣ A ∣ = 1 |A|=1 A=1 ∣ A ∣ = − 1 |A|=-1 A=1
  6. 实对称阵的对应不同特征值的特征向量正交;
  7. 凡是正交矩阵,一定可以对角化。

对角化:参考相似矩阵,本质就是 A = P − 1 B P A=P^{-1}BP A=P1BP , 也就是说一个矩阵A可以转为一个对角阵B.

正交矩阵:本身就是相互垂直,只是说它不见得是各个标准轴。以三维空间为例,我们希望正交矩阵是:
在这里插入图片描述

但是实际他很可能为下边这个样子
在这里插入图片描述亦即以z轴为中心逆时针旋转了45°, 此时向量a,b,c依然相互正交,但是其列向量并不都在标准轴上.

即正交阵是一个在三维坐标系中歪着摆的立方体,对角化就是把这个立方体摆正回来(也就是让它的某个顶点放在原点上,同时这个原点的三条边正好对在三维坐标系xyz三个轴上)

5.9 准对角形矩阵

A A A n n n阶方阵,如果它的分块矩阵具有如下形式: [ A 1 0 . . . 0 0 A 2 . . . 0 . . . 0 0 . . . A n ] \begin{bmatrix} A_1&0&...&0\\ 0&A_2&...& 0\\ ...\\ 0&0&...&A_n\\ \end{bmatrix} A10...00A20.........00An 则称 A A A为准对角形矩阵。

[ A 1 0 . . . 0 0 A 2 . . . 0 . . . 0 0 . . . A _ n ] − 1 = [ A 1 − 1 0 . . . 0 0 A 2 − 1 . . . 0 . . . 0 0 . . . A n − 1 ] \begin{bmatrix}A_1&0&...&0\\0&A_2&...& 0\\ ...\\0&0&...&A\_n\\ \end{bmatrix}^{-1} = \begin{bmatrix}A_1^{-1}&0&...&0\\0&A_2^{-1}&...& 0\\ ...\\0&0&...&A_n^{-1}\\\end{bmatrix} A10...00A20.........00A_n 1= A110...00A210.........00An1

[ A 1 0 . . . 0 0 A 2 . . . 0 . . . 0 0 . . . A n ] − 1 = [ A 1 − 1 0 . . . 0 0 A 2 − 1 . . . 0 . . . 0 0 . . . A _ n − 1 ] \begin{bmatrix}A_1&0&...&0\\0&A_2&...& 0\\ ...\\0&0&...&A_n\\\end{bmatrix}^{-1} = \begin{bmatrix}A_1^{-1}&0&...&0\\0&A_2^{-1}&...& 0\\ ...\\0&0&...&A\_n^{-1}\\\end{bmatrix} A10...00A20.........00An 1= A110...00A210.........00A_n1

5.10 矩阵求导

矩阵求导知识点

5.11 矩阵运算规则

A = ( a i j ) m × n , B = ( b i j ) n × l A=(a_{ij})_{m\times n},B=(b_{ij})_{n\times l} A=(aij)m×n,B=(bij)n×l​,则对于A与B的乘积 C = A B C=AB C=AB有:

C C C的第 i i i行第 j j j列元素 c i j c_{ij} cij​由 A A A的第 i i i行元素与 B B B的第 j j j列元素对应相乘,再取乘积之和

5.12 n阶方阵

m × n m×n m×n阶矩阵 A A A中, m = n m=n m=n;

n n n阶方阵 A A A,可定义行列式记为 ∣ A ∣ |A| A;

n n n阶方阵存在主对角线及主对角线元素。

  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B
  • ∣ A 1 A 2 . . . A n ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A n ∣ |A_1A_2...A_n|=|A_1||A_2|...|A_n| A1A2...An=A1∣∣A2∣...∣An
  • ∣ A T ∣ = ∣ A ∣ , ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^T|=|A|,|A^{-1}|=|A|^{-1} AT=A,A1=A1
  • ∣ k A ∣ n = k n ∣ A ∣ |kA|_n=k^n|A| kAn=knA
  • ∣ A ∗ ∣ n = ∣ A ∣ n − 1 |A^*|_n=|A|^{n-1} An=An1

5. 点乘叉乘

在这里插入图片描述

在这里插入图片描述

6. 参考链接

https://blog.csdn.net/YEN_CSDN/article/details/79966985

https://blog.csdn.net/shyjhyp11/article/details/125458690

https://mp.weixin.qq.com/s/gDLwWhWOjg-bZXPQ9mdkHg

https://blog.csdn.net/sdnuwjw/article/details/119920649

https://su-lemon.gitee.io/post/73a19565.html

https://blog.csdn.net/CSSDCC/article/details/121653596

https://blog.csdn.net/weixin_45626706/article/details/126333057

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值