百倍量化之Dbcd中性策略

Dbcd中性策略是一种基于偏置因子计算和分数阶差分的时间序列分析技术,用于识别股票稳定性。通过计算当前值与历史平均值的偏移和偏离变化趋势,该指标能提供趋势识别和降噪效果。然而,它存在滞后性和参数依赖等缺点。在实际应用中,使用该策略在BNB、BTC和ETH上的回测显示了良好的收益增长,适合用于山寨币的投资策略,以提高年化率。策略的优化关键在于找到合适的参数,如diff_num,以平衡噪声过滤和交易时机的及时性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 指标含义

该指标主要是计算偏置的因子,并根据偏置的平均来分析这个股票的稳定性

  1. 第一步主要操作就是计算当前值和前段时间的平均值的偏置

    ma = bt.indicators.SimpleMovingAverage(self.data, period=self.p.period)# 简单移动平均(SMA)计算基础数据
    self.bias = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值