百倍量化之Dbcd-v2中性策略

Dbcd-v2策略通过计算偏置因子和使用改进的指数移动平均,以识别股票稳定性并平滑数据。相比v1,它提供了更及时的趋势识别。然而,该策略存在滞后性和可能的假信号问题,适用于识别长期趋势和降噪。在回测中,策略在选定币种上的收益显著,尤其适用于山寨币的分散投资,以提高年化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dbcd-v2中性策略

1. 指标含义

该指标主要是计算偏置的因子,并根据偏置的平均来分析这个股票的稳定性。相比于v1,策略是更换了dbcd的计算方式

  1. 第一步主要操作就是计算当前值和前段时间的平均值的偏置

    ma = bt.indicators.SimpleMovingAverage(self.data, period=self.p.period)# 简单移动平均(SMA)计算基础数据
    self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值