时间复杂度的计算。

时间复杂度:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数,T(n)称为这一算法的“时间复杂度”。
    渐近时间复杂度:当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂度”。
    当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。
    此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时间复杂度。以保证算法的运行时间不会比它更长。
常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、k次方阶O(n^k)、指数阶O(2^n)。
下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。
1、设三个函数f,g,h分别为 f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn
请判断下列关系是否成立:
(1) f(n)=O(g(n))
(2) g(n)=O(f(n))
(3) h(n)=O(n^1.5)
(4) h(n)=O(nlgn)
这 里我们复习一下渐近时间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的 两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常 数。这么一来,就好计算了吧。
 
◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。
◆ (2)成立。与上同理。
◆ (3)成立。与上同理。
◆ (4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。
 
2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。
(1) i=1; k=0
while(i<n)
{ k=k+10*i;i++;
}
解答:T(n)=n-1, T(n)=O(n), 这个函数是按线性阶递增的。
(2) x=n; // n>1
while (x>=(y+1)*(y+1))
y++;
解答:T(n)=n1/2 ,T(n)=O(n1/2), 最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数。
(3) x=91; y=100;
while(y>0)
if(x>100)
{x=x-10;y--;}
else x++;
解答: T(n)=O(1), 这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。
3. 常数阶O(1)
 Temp=i;i=j;j=temp;                    
 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
 
4.平方阶O(n^2)
 (1) 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
 
(2)  
    for (i=1;i<n;i++)
    {
        y=y+1;         ①  
        for (j=0;j<=(2*n);j++)   
           x++;        ②     
    }         
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).        
 
5.线性阶O(n)     
                                                      
(1)
    a=0;
    b=1;                      ①
    for (i=2;i<=n;i++) ②
    { 
       s=a+b;    ③
       b=a;     ④ 
       a=s;     ⑤
    }
解: 语句1的频度:2,       
           语句2的频度: n,       
          语句3的频度: n-1,       
          语句4的频度:n-1,   
          语句5的频度:n-1,                                 
          T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
6.线性对数阶O(log2n )
 
(1)
     i=1;       ①
    while (i<=n)
       i=i*2; ②
解: 语句1的频度是1, 
          设语句2的频度是f(n),   则:2^f(n)<=n;f(n)<=log2n   
          取最大值f(n)= log2n,
          T(n)=O(log2n )
 
O(n^3)
 
(2)
    for(i=0;i<n;i++)
    { 
       for(j=0;j<i;j++) 
       {
          for(k=0;k<j;k++)
             x=x+2; 
       }
    }
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取 0,1,...,m-1 , 所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                  
 
我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最 坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细 地选择基准值,我们有可能把平方情况 (即O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。
 
下面是一些常用的记法:
 
(1)访问数组中的元素是常数时间操作,或说O(1)操作。
(2)一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。
(3)用strcmp比较两个具有n个字符的串需要O(n)时间 。
(4)常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
(5)指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的 。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名 的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况, 通常应该用寻找近似最佳结果的算法替代之。
 (6)有如下复杂度关系经验规则
c < log2N < n < n * Log2N < n^2 < n^3 < 2^n < 3^n < n!
其中c是一个常量,如果一个算法的复杂度为c 、 log2N 、n 、 n*log2N ,那么这个算法时间效率比较高 ,如果是 2^n , 3^n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

本文来自CSDN博客,转载请标明出处: http://blog.csdn.net/curtis2008/archive/2010/01/20/5215194.aspx
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值