-
我么知道MRv1存在的主要问题是:在运行时,JobTracker既负责资源管理又负责任务调度,这导致了它的扩展性、资源利用率低等问题。之所以存在这样的问题,是与其最初的设计有关,如下图:
Yarn对MRv1的最大改进就是将资源管理与任务调度分离,使得各种数据处理方式能够共享资源管理,如下图所示:
MRv1与Yarn的主要区别:在MRv1中,由JobTracker负责资源管理和作业控制,而Yarn中,JobTracker被分为两部分:ResourceManager(RM)和ApplicationMaster(AM)。如下图所示:
Yarn与MRv1的差异对编程的影响:我们知道,MRv1主要由三部分组成:编程模型(API)、数据处理引擎(MapTask和ReduceTask)和运行环境(JobTracker和TaskTracker);Yarn继承了MRv1的编程模型和数据处理,改变的只是运行环境,所以对编程没有什么影响。
为了更好 的说明Yarn的资源管理,首先来看下Yarn的框架,如下图所示:
下面对上面的内容通过内存资源配置进行详细说明:下面对上面的内容通过内存资源配置进行详细说明:
RM的内存资源配置,主要是通过下面的两个参数进行的(这两个值是Yarn平台特性,应在yarn-sit.xml中配置好):
yarn.scheduler.minimum-allocation-mb
yarn.scheduler.maximum-allocation-mb
说明:单个容器可申请的最小与最大内存,应用在运行申请内存时不能超过最大值,小于最小值则分配最小值,从这个角度看,最小值有点想操作系统中的页。最小值还有另外一种用途,计算一个节点的最大container数目注:这两个值一经设定不能动态改变(此处所说的动态改变是指应用运行时)。
NM的内存资源配置,主要是通过下面两个参数进行的(这两个值是Yarn平台特性,应在yarn-sit.xml中配置) :
yarn.nodemanager.resource.memory-mb
yarn.nodemanager.vmem-pmem-ratio
说明:每个节点可用的最大内存,RM中的两个值不应该超过此值。此数值可以用于计算container最大数目,即:用此值除以RM中的最小容器内存。虚拟内存率,是占task所用内存的百分比,默认值为2.1倍;注意:第一个参数是不可修改的,一旦设置,整个运行过程中不可动态修改,且该值的默认大小是8G,即使计算机内存不足8G也会按着8G内存来使用。
AM内存配置相关参数,此处以MapReduce为例进行说明(这两个值是AM特性,应在mapred-site.xml中配置),如下:
mapreduce.map.memory.mb
mapreduce.reduce.memory.mb
说明:这两个参数指定用于MapReduce的两个任务(Map and Reduce task)的内存大小,其值应该在RM中的最大最小container之间。如果没有配置则通过如下简单公式获得:
max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
一般的reduce应该是map的2倍。注:这两个值可以在应用启动时通过参数改变;
AM中其它与内存相关的参数,还有JVM相关的参数,这些参数可以通过,如下选项配置:
mapreduce.map.java.opts
mapreduce.reduce.java.opts
说明:这两个参主要是为需要运行JVM程序(java、scala等)准备的,通过这两个设置可以向JVM中传递参数的,与内存有关的是,-Xmx,-Xms等选项。此数值大小,应该在AM中的map.mb和reduce.mb之间。
我们对上面的内容进行下总结,当配置Yarn内存的时候主要是配置如下三个方面:每个Map和Reduce可用物理内存限制;对于每个任务的JVM对大小的限制;虚拟内存的限制;
下面通过一个具体错误实例,进行内存相关说明,错误如下:
Container[pid=41884,containerID=container_1405950053048_0016_01_000284] is running beyond virtual memory limits. Current usage: 314.6 MB of 2.9 GB physical memory used; 8.7 GB of 6.2 GB virtual memory used. Killing container.
配置如下:
- <property>
- <name>yarn.nodemanager.resource.memory-mb</name>
- <value>100000</value>
- </property>
- <property>
- <name>yarn.scheduler.maximum-allocation-mb</name>
- <value>10000</value>
- </property>
- <property>
- <name>yarn.scheduler.minimum-allocation-mb</name>
- <value>3000</value>
- </property>
- <property>
- <name>mapreduce.reduce.memory.mb</name>
- <value>2000</value>
- </property>
memory used”。而由于使用了默认虚拟内存率(也就是2.1倍),所以对于Map Task和Reduce Task总的虚拟内存为都为3000*2.1=6.2G。而应用的虚拟内存超过了这个数值,故报错 。解决办
法:在启动Yarn是调节虚拟内存率或者应用运行时调节内存大小。
在上Yarn的框架管理中,无论是AM从RM申请资源,还是NM管理自己所在节点的资源,都是通过container进行的。Container是Yarn的资源抽象,此处的资源包括内存和cup等。下面对
container,进行比较详细的介绍。为了是大家对container有个比较形象的认识,首先看下图:
以便启动该任务。下面通过ResourceRequest、container和ContainerLaunchContext的protocol buffs定义,对其进行具体分析。
ResourceRequest结构如下:
- message ResourceRequestProto {
- optional PriorityProto priority = 1; // 资源优先级
- optional string resource_name = 2; // 期望资源所在的host
- optional ResourceProto capability = 3; // 资源量(mem、cpu)
- optional int32 num_containers = 4; // 满足条件container个数
- optional bool relax_locality = 5 ; //default = true;
- }
2:在提交申请时,期望从哪台主机上获得,但最终还是AM与RM协商决定;
3:只包含两种资源,即:内存和cpu,申请方式:<memory_num,cup_num>
注:1、由于2与4并没有限制资源申请量,则AP在资源申请上是无限的。2、Yarn采用覆盖式资源申请方式,即:AM每次发出的资源请求会覆盖掉之前在同一节点且优先级相同的资源请求,
也就是说同一节点中相同优先级的资源请求只能有一个。
container结构:
- message ContainerProto {
- optional ContainerIdProto id = 1; //container id
- optional NodeIdProto nodeId = 2; //container(资源)所在节点
- optional string node_http_address = 3;
- optional ResourceProto resource = 4; //分配的container数量
- optional PriorityProto priority = 5; //container的优先级
- optional hadoop.common.TokenProto container_token = 6; //container token,用于安全认证
- }
ContainerLaunchContext结构:
点击(此处)折叠或打开
- message ContainerLaunchContextProto {
- repeated StringLocalResourceMapProto localResources = 1; //该Container运行的程序所需的在资源,例如:jar包
- optional bytes tokens = 2;//Security模式下的SecurityTokens
- repeated StringBytesMapProto service_data = 3;
- repeated StringStringMapProto environment = 4; //Container启动所需的环境变量
- repeated string command = 5; //该Container所运行程序的命令,比如运行的为java程序,即$JAVA_HOME/bin/java org.ourclassrepeated ApplicationACLMapProto application_ACLs = 6;//该Container所属的Application的访问
- 控制列表
- }
- 申请一个新的ContainerLaunchContext:
- ContainerLaunchContext ctx = Records.newRecord(ContainerLaunchContext.class);
- 填写必要的信息:
- ctx.setEnvironment(...);
- childRsrc.setResource(...);
- ctx.setLocalResources(...);
- ctx.setCommands(...);
- 启动任务:
- startReq.setContainerLaunchContext(ctx);
最后对container进行如下总结:container是Yarn的资源抽象,封装了节点上的一些资源,主要是CPU与内存;container是AM向NM申请的,其运行是由AM向资源所在NM发起的,并最终运行
的。有两类container:一类是AM运行需要的container;另一类是AP为执行任务向RM申请的。
Yarn简单介绍及内存配置
最新推荐文章于 2023-07-07 21:23:36 发布