公共数据库介绍~世界银行World Bank

公共数据库-世界银行World Bank

 

如果需要分析国家的相关数据信息,那么“世界银行World Bank数据库”将是不二选择。我们可以在该数据库中免费获取世界各国的发展数据,其提供了超过9000个的指标文档。并且其类似于“google公共数据库”,通过简单的点选即可形成可视化展示,也可以很容易的分享到你的网页中。

 

网址:http://data.worldbank.org.cn/

 

让我们来看看其首页:

使用World Bank数据库简单直观,通过搜索或者按国家或指标可以迅速的定位到你关注的国家。我们点击“国家”来介绍使用:


这里按照首字符可以很方便的选择到国家,也可以在“快速搜索”中输入国家首字符来定位,也可以在右侧按照地区或者收入水平(还有许多分类项)来定位,这次我们选择我们的祖国-“中国”。我们在“快速搜索”中输入“中”就能找到我们的祖国。

点击“中国”,我们将看到如下页面:

顶部我们看到了蓝色筛选项“中国”,下部分则列出了一些列的指标图,如GDP、人口、入学率、二氧化碳排放量等等,右侧红色部分则可以下载关于中国的指标数据。当然单独的国家显示虽有意义但是效果不好,我们还可以将中国与相应的国家进行比较,我们点击GDP图中左上角“GDP(现价美元)”:

很明显的是,顶部筛选框中多了一个蓝色块:GDP(现价美元),下部左侧则是中国的GDP(现价美元)折线图,我们还可以在右侧选择GDP中的多个指标,相应的折线图也会变化,再往下拖动该页:

我们可以看到“所选国家和经济体”中中国被选中了,在“所有国家和经济体”中我们还可以再选择国家加入对比比较,这里我们点选“印度”:

我们清晰的看到了中国与印度从1960年开始到2015GDP变化情况,我们发现1990年前中印基本差不多,但是1990年后中国扶摇直上,而印度增加缓慢,因为中印人口差不多,一图就说明中国改革开放成就巨大!为我们伟大的祖国自豪吧!

另外,上图中,我们还可以在左上角选择柱状图显示及直接在地图上显示:

右上角“分享”可以方便的生产分享代码,嵌入到你的网页中,将令你的分析蓬荜生辉。分享按钮旁边的“详细信息”则是对指标的文本解释。

往下拖动网页,我们可以看到基于世界银行公开数据所做的分析文章,这又是一个学习的好途径。页面右上角还有三个蓝色链接:Databank、微数据、数据目录。

其中Databank,点击进入,可以获得关于国家的更详细的指标及数据,特别是其还可以对特定时间区隔进行选择。

微数据中包含了由用户提供分享的关于国家等团体的更详细数据,其是主数据的补充。

数据目录列出了该公开数据库中所有数据的目录信息。


### World Bank 数据分析方法和工具 #### 使用 Pandas 进行数据加载与预处理 对于来自世界银行数据,可以利用 `pandas` 库来简化数据的导入过程。由于这些数据通常保存为 Excel 文件格式,因此可以直接应用 `pd.read_excel()` 函数来进行读取[^3]。 ```python import pandas as pd # 加载Excel文件 xlsx = pd.ExcelFile('world_bank_data.xlsx') data = pd.read_excel(xlsx, sheet_name='Data') print(data.head()) ``` #### 获取全球经济发展指标 为了更好地理解世界经济状况以及各国之间的差异,可以从世界银行开放数据库中选取特定的时间序列数据集,比如 GDP 增长率、通货膨胀率等宏观经济变量[^1]。这有助于识别不同经济体的发展模式及其相互关系。 #### 可视化时间序列数据 借助 Matplotlib 或 Seaborn 等可视化库绘制图表,以便更清晰地展示随时间变化的趋势。例如: ```python import matplotlib.pyplot as plt plt.figure(figsize=(10, 6)) for country in ['China', 'United States', 'Germany']: subset = data[data['Country Name'] == country] plt.plot(subset['Year'], subset['GDP Growth Rate'], label=country) plt.title('Annual GDP Growth Rates by Country (2000-2020)') plt.xlabel('Year') plt.ylabel('% Change from Previous Year') plt.legend() plt.show() ``` #### 统计描述与探索性数据分析(EDA) 执行基本统计操作如均值、标准差计算可以帮助概括整体特征;而箱线图则可用于检测异常值的存在情况。此外还可以尝试聚类算法寻找潜在模式或分组结构。 ```python summary_stats = data[['Indicator Code']].describe() from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=5).fit(data.select_dtypes(include=['float'])) labels = kmeans.labels_ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值