Transfer Learning(迁移学习)

本文介绍了迁移学习在深度学习中的应用场景,包括固定特征提取、微调ConvNet以及预训练模型的使用。通常,从ImageNet等大型数据集预训练的ConvNet可以作为固定特征提取器或进行微调,以适应新的任务。根据新数据集的大小和与原始数据集的相似性,选择合适的迁移学习策略,如仅训练线性分类器或全网微调。
摘要由CSDN通过智能技术生成

Transfer Learning

In practice, very few people train an entire Convolutional Network from scratch (with random initialization), because it is relatively rare to have a dataset of sufficient size. Instead, it is common to pretrain a ConvNet on a very large dataset (e.g. ImageNet, which contains 1.2 million images with 1000 categories), and then use the ConvNet either as an initialization or a fixed feature extractor for the task of interest. The three major Transfer Learning scenarios look as follows:

ConvNet as fixed feature extractor. Take a ConvNet pretrained on ImageNet, remove the last fully-connected layer (this layer’s outputs are the 1000 class scores for a different task like ImageNet), then treat the rest of the ConvNet as a fixed feature extractor for the new dataset. In an AlexNet, this would compute a 4096-D vector for every image that contains the activations of the hidden layer immediately before the classifier. We call these featuresCNN codes. It is important for performance that these codes are ReLUd (i.e. thresholded at zero) if they were also thre

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值