PAT 乙级 1030 完美数列(二分查找 及 upper_bound()函数的使用)

给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列。

现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列。

输入格式:

输入第一行给出两个正整数 N 和 p,其中 N(≤105)是输入的正整数的个数,p(≤109)是给定的参数。第二行给出 N 个正整数,每个数不超过109

输出格式:

在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。

输入样例:

10 8
2 3 20 4 5 1 6 7 8 9

输出样例:

8

解题思路:对数组排序后遍历数组寻找从当前位置i开始第一个超过P*a[i]的元素的下标,即可求出有多少数在这个范围内。

注意:需要通过二分查找减少复杂度否则测试点4超时,所求长度的初值需要置为1,否则测试点3不能通过。P乘以数组元素后可能会超过109所以需要用long long存储。

代码:

#include<cstdio>
#include<algorithm>
typedef long long LL;
int binarysearch(int a[],int left,int right,LL P)
{
	LL number = a[left] * P;
	
	while(left < right)
	{
		int mid = (left + right) / 2;
		if(a[mid] <= number)
			left = mid + 1;
		else
			right = mid; 
	}
	return left;
}
using namespace std;
int main(void)
{
	int N;
	LL P;
	scanf("%d %lld",&N,&P);
	int a[N];
	for(int i = 0;i < N;i++)
	{
		scanf("%d",&a[i]);
	}
	sort(a,a+N);
	int maxlength = 1;
	for(int i = 0;i < N - 1;i++)
	{
		int right = binarysearch(a,i,N,P);
		if(right - i > maxlength)
			maxlength = right - i;
	}
	printf("%d",maxlength);
	return 0;
}

还可以直接用upper_bound()函数寻找第一个大于所求元素在数组中的地址。注意:这里返回的是地址,通过减去数组名获得下标。

代码:


#include<cstdio>
#include<algorithm>
typedef long long LL;
using namespace std;
int main(void)
{
	int N;
	LL P;
	scanf("%d %lld",&N,&P);
	int a[N];
	for(int i = 0;i < N;i++)
	{
		scanf("%d",&a[i]);
	}
	sort(a,a+N);
	int maxlength = 1;
	for(int i = 0;i < N - 1;i++)
	{
		int right = upper_bound(a+i,a+N,P*a[i]) - a;
		if(right - i > maxlength)
			maxlength = right - i;
	}
	printf("%d",maxlength);
	return 0;
}

还可以用two point的方法,通过i,j只需要遍历一次数组就可以求出最大的数列的个数。时间复杂度只有O(n)

#include<cstdio>
#include<algorithm>
using namespace std;
int main(void)
{
	int N,p;
	scanf("%d %d",&N,&p);
	int a[N];
	for(int i = 0;i < N;i++)
		scanf("%d",&a[i]);
	sort(a,a+N);
	long long sum;
	int temp = 1,i = 0,j = 0;
	for(int i = 0,j = 0;j < N&&i< N;)
	{
		sum = (long long)a[i] * p;
		if(sum >= a[j])
		{
			temp = max(temp,j - i+1); 
			j++;
		}
		else
			i++;
	}
	printf("%d",temp);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值