给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列。
现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列。
输入格式:
输入第一行给出两个正整数 N 和 p,其中 N(≤105)是输入的正整数的个数,p(≤109)是给定的参数。第二行给出 N 个正整数,每个数不超过109。
输出格式:
在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。
输入样例:
10 8
2 3 20 4 5 1 6 7 8 9
输出样例:
8
解题思路:对数组排序后遍历数组寻找从当前位置i开始第一个超过P*a[i]的元素的下标,即可求出有多少数在这个范围内。
注意:需要通过二分查找减少复杂度否则测试点4超时,所求长度的初值需要置为1,否则测试点3不能通过。P乘以数组元素后可能会超过109所以需要用long long存储。
代码:
#include<cstdio>
#include<algorithm>
typedef long long LL;
int binarysearch(int a[],int left,int right,LL P)
{
LL number = a[left] * P;
while(left < right)
{
int mid = (left + right) / 2;
if(a[mid] <= number)
left = mid + 1;
else
right = mid;
}
return left;
}
using namespace std;
int main(void)
{
int N;
LL P;
scanf("%d %lld",&N,&P);
int a[N];
for(int i = 0;i < N;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+N);
int maxlength = 1;
for(int i = 0;i < N - 1;i++)
{
int right = binarysearch(a,i,N,P);
if(right - i > maxlength)
maxlength = right - i;
}
printf("%d",maxlength);
return 0;
}
还可以直接用upper_bound()函数寻找第一个大于所求元素在数组中的地址。注意:这里返回的是地址,通过减去数组名获得下标。
代码:
#include<cstdio>
#include<algorithm>
typedef long long LL;
using namespace std;
int main(void)
{
int N;
LL P;
scanf("%d %lld",&N,&P);
int a[N];
for(int i = 0;i < N;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+N);
int maxlength = 1;
for(int i = 0;i < N - 1;i++)
{
int right = upper_bound(a+i,a+N,P*a[i]) - a;
if(right - i > maxlength)
maxlength = right - i;
}
printf("%d",maxlength);
return 0;
}
还可以用two point的方法,通过i,j只需要遍历一次数组就可以求出最大的数列的个数。时间复杂度只有O(n)。
#include<cstdio>
#include<algorithm>
using namespace std;
int main(void)
{
int N,p;
scanf("%d %d",&N,&p);
int a[N];
for(int i = 0;i < N;i++)
scanf("%d",&a[i]);
sort(a,a+N);
long long sum;
int temp = 1,i = 0,j = 0;
for(int i = 0,j = 0;j < N&&i< N;)
{
sum = (long long)a[i] * p;
if(sum >= a[j])
{
temp = max(temp,j - i+1);
j++;
}
else
i++;
}
printf("%d",temp);
return 0;
}