基于低代码平台打造的焙乐道销售支持系统

编者按:低代码平台说了那么多,在实际应用中又是怎样体现的它的种种优势呢?今天小编结合实际案例来说说。

 

本文是以最大的烘焙原料产商——焙乐道的销售支持系统为例子,进行说明。

客户说明:焙乐道是一家国际性集团公司,是世界最大的烘焙原料产商,在1919年成立于比利时,目前全球员工超过6000人,于1995年5月在中国成立广州焙乐道食品有限公司。其经营产品种类繁多、花样创新多样,其产品和服务遍及世界100多个国家,并设有分支机构,其服务对象有超市零售商、餐饮部门和工业客户等。

客户需求:

1、解决公司给各个渠道经销商批下来经费后,经销商是否真正的去实施是否充分利用好资金来完成活动公司并不能真实了解,若是对每个地区的经销商都进行实地考察又存在较大难度,故经销商经营虚报的问题就屡见不鲜的问题;

  1. 解决针对经营数据混乱的问题

  2. 针对人员管理混乱问题

针对以上问题,天翎MyApps利用丰富的技术经验,给出了一个柔性定制系统,图示如下:

销售支持系统由“合同管理”和“报表编辑及推送”两大核心部分组成。快消品行业需在签订合作中体现返利、促销奖励、佣金等计算方式,故将各环节归类到合同管理中,依据合同管理中的数据,不同角色可编辑制定相应的报表及推送,管理人员可依据权限查看不同的报表。

  1. 可视化开发,通过拖来拽的方式快速搭建

天翎MyApps快速开发平台仅用了两周的时间,根据客户的需求在48小时内快速搭建出了DEMO原型,使得在需求沟通上大大缩短了时间。

  1. 个性化定制,私有化部署,通过MyApps快速开发平台,在短时间内实现焙乐道个性化需求。比如焙乐道的巡店管理、费用管理、人员管理等模块。

巡店管理模块

  • 包括:巡店计划、问题分类、实时反馈等,在巡店的第一时间里能把问题记录并反馈上去。

费用管理模块

  • 针对经营数据混乱的问题,包括新增预算申请、预算审批、新增费用报销、核销管理、费用报销查询等功能模块。

外勤管理模块

  • 针对人员管理混乱问题,包括考勤签到、考勤签退、签到记录、巡店报告、巡店评分等功能模块。

通过提供详细的API接口,通过这些接口平台可以快速的同其他系统进行整合,实现系统间业务数据的双向交换、业务处理流程等功能。

巡店报表

可以根据实际业务场景定制所需的各类型报表,如折线图、散点图、柱状图、面积图、饼图等。

  • 每次活动从前期的审批到中期执行再到后期的费用管理,通过闭环流程,实现数据实时动态和真实性,考勤管理模块也为活动顺利完成提供了有效后勤保障,各种类型的图形报表使数据分析表达的更加清晰明了。

项目价值:

  1. 通过活动管理和巡店管理模块,公司就可以随时让经销商拍摄上传照片来有效的查看到活动现场情况,且我们取消了从相册上传的选项只能现场拍照,融入位置定位,实现外勤人员考勤、过程、结果管理,这样一来就大大提高了数据反馈的真实性,可即时制定策略,提高市场份额。

  2. 系统将自动向相关人员发起提醒,催办,订单匹配区域经销商同步呈现,既降低了沟通成本,也降低了管理成本,费用控制真实发生,轻松实现高效、优化配送计划,工作计划,报告即时反馈,效率提升,收益提高。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值