leetcode_63_不同路径II

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

网格中的障碍物和空位置分别用 1 和 0 来表示。

说明:m 和 n 的值均不超过 100。

示例 1:

输入:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

--------------------------------------------------------------------

思路:

首先想到的是BS(广度搜索)和DS(深度搜索)算法。虽然能够得到正确答案,但是超时,时间复杂度为O(n^2),空间复杂度为O(n^2)

随后想到的是动态规划。

先定义:matrix[][]是迷宫矩阵,0表示可以走,1表示阻塞。row表示matrix的行,column表示matrix的列数。

因为在这里matrix不一定是方阵,为了便于处理,使用方阵ob[][]来表示。(当然每个人的想法不一样,这种做只是比较方便操作而已23333)。

方阵ob的维度为Max(row, column)。使用max表示其维度大小。

使用dp[i][j]来表示:到达ob[i][j]处的道路条数。 

Notice:如果i>=row || j>=column。即此时已经处于我们人为扩展处,此时dp[i][j]恒为0,即不可达。

因为该题限定只能往右或者往下走,所以状态转移方程不是很复杂。分几种情况:

① 如果ob[i][j] == 1。dp[i][j] = 0。

② 如果ob[i][j]处于上边界,即:i-1<0,此时 dp[i][j] = dp[i][j-1]。即只有向右走的权重。

③ 如果ob[i][j]处于左边界,即j-1<0,此时dp[i][j] = dp[i-1][j]。即只有向下走的权重。

④ dp[i][j] = dp[i-1][j] + dp[i][j-1]。除去上面三种情况下。

---------------------------------------------------------------------

得到状态转移方程后,便可编程实现。

但是在实现时需要注意:

① dp[][]状态矩阵的初始化问题。

可以像下面这样初始化dp矩阵的上边界值,以及左边界值:

//初始化上边界
for(int i = 0;i < column;i++){
     if(ob[0][i] == 1) break;
     dp[0][i] = 1;
}
//初始化左边界
for(int i = 0;i < row;i++){
     if(ob[i][0] == 1) break;
     dp[i][0] = 1;
}

② dp[0][0]的初始化问题。

不能一概而论的定义dp[0][0] = 1。

因为如果ob[0][0] == 1,则永远无法到达目的地。。。。

所以可以在初始化dp[0][0]之前先判断ob[0][0]是否为1。如果为1,则直接返回0,否则可以将dp[0][0]初始化为1。

③ 更新状态矩阵的问题。

在更新时,我是按照主对角线来往下走,这也是自己将原始迷宫矩阵扩展为方阵的原因。

在沿着主对角线更新时,一定需要同时更新当前所在主对角线位置所在的一整行和一整列。

如下:

//sr表示当前所在的主对角线的位置的行下标,sc是列下标。
//row是原始迷宫矩阵的行数,column是列数
public void updateRowAndColumn(int [][]ob, int [][]dp, int sr, int sc,int row, int column){
    if(sr>=row || sc>=column) return;
    //更新当前一行
    for(int i = 1;i < column;i++){
        if(ob[sr][i] == 1) continue;
        dp[sr][i] = dp[sr][i-1] + dp[sr-1][i];
    }
    //更新当前一列
    for(int i = 1;i < row;i++){
        if(ob[i][sc] == 1) continue;
        dp[i][sc] = dp[i-1][sc] + dp[i][sc-1];
    }

}

-----------------------------------------------------------------

贴上完整代码。包括DS和动态规划:

package leetcode;/*
name: LeetCode_61
user: ly
Date: 2020/7/6
Time: 8:48
*/

public class LeetCode_61 {
    public static void main(String []args){
        int [][]ob = {
                {1,0}
        };
        System.out.println(new LeetCode_61().uniquePathsWithObstacles1(ob));
    }
//    深度搜索。超时
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int row = obstacleGrid.length;
        int colum = obstacleGrid[0].length;
        int [][]book = new int[row+1][colum+1];
        book[0][0] = 1;
        deepSearch(obstacleGrid, 0, 0, book);

        return all;
    }
    int [][]dir = {{-1,0},{0,1},{1,0},{0,-1}};
    int all = 0;
    public void deepSearch(int [][]ob, int row, int colum, int [][]book){
        if(row<0 || row>=ob.length || colum<0 || colum>=ob[0].length || ob[row][colum]==1) return;
        if(row==ob.length-1 && colum==ob[0].length-1){
            System.out.println("find onw way");
            for(int i = 0;i < ob.length;i++){
                for(int j = 0;j < ob[0].length;j++){
                    System.out.print(book[i][j]+"\t");
                }
                System.out.println();
            }
            all++;
            return;
        }
        //此时可以走
        for(int i = 0;i < 4;i++){
            int nrow = row + dir[i][0];
            int ncolum = colum + dir[i][1];
            if(nrow<0 || nrow>=ob.length || ncolum<0 || ncolum>=ob[0].length) continue;
            if(ob[nrow][ncolum]==1 || book[nrow][ncolum]==1) continue;
            book[nrow][ncolum] = 1;
            {
                deepSearch(ob, nrow, ncolum, book);
            }
            book[nrow][ncolum] = 0;
        }
    }
//  动态规划.AC
    public int uniquePathsWithObstacles1(int[][] obstacleGrid) {
        int row = obstacleGrid.length;
        int colum = obstacleGrid[0].length;
        if(obstacleGrid[0][0] == 1) return 0;
//        if(row==colum && row==1){
//            if(obstacleGrid[0][0] == 1) return 0;
//            else return 1;
//        }
        int max = row>colum?row:colum;
        int [][]dp = new int[max][max];  //扩展成方阵
        int [][]ob = new int[max][max];
        for(int i = 0;i < max;i++){
            for(int j = 0;j < max;j++){
                if(i<row && j<colum){
                    ob[i][j] = obstacleGrid[i][j];
                }else{
                    ob[i][j] = 1;
                }
            }
        }
        dp[0][0] = 1;
        for(int i = 0;i < colum;i++){
            if(ob[0][i] == 1) break;
            dp[0][i] = 1;
        }
        for(int i = 0;i < row;i++){
            if(ob[i][0] == 1) break;
            dp[i][0] = 1;
        }
        int sr = 0;
        int sc = 0;
        int [][]dir = {{0,1},{1,0}};  //向右。向下
        while(sr<max && sc<max){
            for(int i = 0;i < 2;i++){
                int nr = sr + dir[i][0];
                int nc = sc + dir[i][1];
                if(nr<0 || nr>=max || nc<0 || nc>=max) continue;
                if(ob[nr][nc] == 1) continue;
                //此时可以走
                if(nr-1>=0 && nc-1>=0){
                    //此时不在左上边界,原则上由两条路到达(nr,nc)
                    System.out.print("不在左、上边界处。更新("+nr+","+nc+"):"+dp[nr-1][nc]+"+"+dp[nr][nc-1]);
                    dp[nr][nc] = dp[nr-1][nc] + dp[nr][nc-1];
                    System.out.println("更新后到达该位置的路径有:"+dp[nr][nc]+"条");
                }else if(nr-1<0 && nc-1>=0){
                    //上边界
                    System.out.println("在上边界处。更新("+nr+","+nc+"):"+dp[nr][nc-1]);
                    dp[nr][nc] = dp[nr][nc-1];
                    System.out.println("更新后到达该位置的路径有:"+dp[nr][nc]+"条");
                }else if(nr-1>=0 && nc-1<0){
                    //左边界
                    System.out.println("在左边界处。更新("+nr+","+nc+"):"+dp[nr-1][nc]);
                    dp[nr][nc] = dp[nr-1][nc];
                    System.out.println("更新后到达该位置的路径有:"+dp[nr][nc]+"条");
                }
            }
            sr++;
            sc++;
            if(sr>=max || sc>=max) break;
            //然后更新对角线
            if(ob[sr][sc] == 0){
                dp[sr][sc] = dp[sr-1][sc] + dp[sr][sc-1];  //不需要判断是否出界
                System.out.println("可更新:("+sr+","+sc+")"+",此时到该点总共有"+dp[sr][sc]+"种走法");
            }else{
                System.out.println("不可更新:("+sr+","+sc+")");
            }
            if(sr==max-1 && sc==max-1) break;
            //更新当前元素所在的行、列
            updateRowAndColum(ob, dp, sr, sc, row, colum);

        }
        for(int i = 0;i < max;i++){
            for(int j = 0;j < max;j++){
                System.out.print(dp[i][j]+"\t");
            }
            System.out.println();
        }
        return dp[row-1][colum-1];
    }

    public void updateRowAndColum(int [][]ob, int [][]dp, int sr, int sc,int row, int colum){
        if(sr>=row || sc>=colum) return;
        //更新当前一行
        for(int i = 1;i < colum;i++){
            if(ob[sr][i] == 1) continue;
            dp[sr][i] = dp[sr][i-1] + dp[sr-1][i];
        }
        //更新当前一列
        for(int i = 1;i < row;i++){
            if(ob[i][sc] == 1) continue;
            dp[i][sc] = dp[i-1][sc] + dp[i][sc-1];
        }

    }

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值