解题思路:
回顾一下Unique Paths
3×3矩阵,到每个格子的方法数是多少?
1 1 1
1 2 3
1 3 6
可以看到到达某个格子的路径数为它上和左的路径数的和, 也就是dp[i][j]=dp[i-1][j]+dp[i][j-1]
最后进行加和的时候,注意对第一行和第一列进行特殊处理即可
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m=obstacleGrid.size();
int n=obstacleGrid[0].size();
int i,j;
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1)return 0;
vector<vector<int>> dp(m,vector<int>(n,1));
for(i=0;i<m;i++){
for(j=0;j<n;j++){
if(obstacleGrid[i][j]==1)dp[i][j]=0;
}
}
for(i=0;i<m;i++){
for(j=0;j<n;j++){
if(dp[i][j]!=0){
if(i-1<0&&j-1>=0)dp[i][j]=dp[i][j-1];
if(i-1>=0&&j-1<0)dp[i][j]=dp[i-1][j];
if(i-1>=0&&j-1>=0)dp[i][j]=dp[i][j-1]+dp[i-1][j];
}
}
}
return dp[m-1][n-1];
}
};