【毕业设计系列】030:基于PCA和BP神经网络的人脸识别系统【含Matlab源码】

本文介绍了基于PCA和BP神经网络的毕业设计项目,通过MATLAB实现,达到了82%以上的识别准确率。训练部分使用PCA进行特征降维,然后用BP神经网络进行训练;测试部分对新图像进行PCA降维和模型预测,以验证识别效果。
摘要由CSDN通过智能技术生成

Date: 2022.4.26


前言

在毕业设计中实现了基于PCA和BP神经网络的人脸识别系统,采用matlab语言,准确率达到了82%以上。

注:需要相关代码可以订阅专栏后咨询博主。

1、总体介绍

FaceRecognitionByBPneuralnetwork.m:采用BP神经网络的人脸识别的训练主程序。
对于基于机器学习(比如ANN人工神经网络、SVM支持向量机等)的方法进行人脸识别或者其他应用,一般通过输入大量样本采用机器学习方法进行训练,得到模型,然后再利用这个模型对于输入的其他样本数据进行预测,得到测试结果。

总体来讲,这里基于BP神经网络的人脸识别包括训练和预测测试两大部分。FaceRecognitionByBPneuralnetwork是训练部分,TestofFaceRecognitionByBPneuralnetwork.m是测试部分。

2、详细分析

2.1、训练程序

1、利用PCA的主成分分析的方法提取图像的特征矩阵;
分析:

  • PCA主要功能就是降维,将高维数据变成低
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科技工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值