Date: 2022.4.26
前言
在毕业设计中实现了基于PCA和BP神经网络的人脸识别系统,采用matlab语言,准确率达到了82%以上。
注:需要相关代码可以订阅专栏后咨询博主。
1、总体介绍
FaceRecognitionByBPneuralnetwork.m:采用BP神经网络的人脸识别的训练主程序。
对于基于机器学习(比如ANN人工神经网络、SVM支持向量机等)的方法进行人脸识别或者其他应用,一般通过输入大量样本采用机器学习方法进行训练,得到模型,然后再利用这个模型对于输入的其他样本数据进行预测,得到测试结果。
总体来讲,这里基于BP神经网络的人脸识别包括训练和预测测试两大部分。FaceRecognitionByBPneuralnetwork是训练部分,TestofFaceRecognitionByBPneuralnetwork.m是测试部分。
2、详细分析
2.1、训练程序
1、利用PCA的主成分分析的方法提取图像的特征矩阵;
分析:
- PCA主要功能就是降维,将高维数据变成低维数据,这里训练程序中,使用了数据库中40组图像的1~5张图像作为训练图像;
- 降维过程主要是求取图像的特征值和特征向量,降序排列后选取85%的能量作为训练数据,降低训练难度。
- 确