【interleaving-string】

Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

For example,
Given:
s1 ="aabcc",
s2 ="dbbca",

When s3 ="aadbbcbcac", return true.
When s3 ="aadbbbaccc", return false.



题意:s1和s2是否能构成s3

思路:动态规划问题
dp[i][j]表示S1前i个字符与S2前j个字符是否构成S3前i+j字符;
class Solution
{
public:
	bool isInterleve(string s1, string s2, string s3)
	{
		int rows = s1.length();
		int cols = s2.length();
		int lens = s3.length();

		if ((rows+cols)!=lens)
		{
			return false;
		}
		if (rows==0 || cols==0)
		{
			if ((rows==0 && s2!=s3)
				|| (cols==0 && s1!=s3))
			{
				return false;
			}
		}

		vector<vector<int>> dp(rows+1, vector<int>(cols+1, false));
		dp[0][0] = true;
		
	   //初始化操作
		for (int i=1; i<=rows; i++)
		{
			dp[i][0] = dp[i - 1][0] && (s1[i-1]==s3[i-1]);
		}

		for (int i = 1; i <= cols; i++)
		{
			dp[0][i] = dp[0][i] && (s2[i - 1] == s3[i - 1]);
		}

		for (int i=1; i<=rows; i++)
		{
			for (int j=1; j<=cols; j++)
			{
				//要满足条件,则s3的最后一个要么是s1的最后一个字符
				//要么是s2的最后一个字符
				if (s3[i + j - 1] == s1[i - 1] && dp[i - 1][j])
				{
					dp[i][j] = true;
				}
				else if (s3[i + j - 1] == s2[j - 1] && dp[i][j - 1])
				{
					dp[i][j] = true;
				}
				else
					dp[i][j] = false;
			}
		}

			return dp[rows][cols];
	}
};


Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

For example,
Given:
s1 ="aabcc",
s2 ="dbbca",

When s3 ="aadbbcbcac", return true.
When s3 ="aadbbbaccc", return false.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值