【一本通】五指山【exgcd】

Date:2022.03.31
题意描述:
大圣在佛祖的手掌中。
我们假设佛祖的手掌是一个圆圈,圆圈的长为 n,逆时针记为:0,1,2,…,n−1,而大圣每次飞的距离为 d。
现在大圣所在的位置记为 x,而大圣想去的地方在 y。
要你告诉大圣至少要飞多少次才能到达目的地。
注意:孙悟空的筋斗云只沿着逆时针方向翻。
输入格式
有多组测试数据。
第一行是一个正整数 T,表示测试数据的组数;
每组测试数据包括一行,四个非负整数,分别为如来手掌圆圈的长度 n,筋斗所能飞的距离 d,大圣的初始位置 x 和大圣想去的地方 y。
输出格式
对于每组测试数据,输出一行,给出大圣最少要翻多少个筋斗云才能到达目的地。
如果无论翻多少个筋斗云也不能到达,输出 Impossible。
数据范围
2<n<109,
0<d<n,
0≤x,y<n
输入样例:
2
3 2 0 2
3 2 0 1
输出样例:
1
2

思路:由题可得 ( x + k 1 ∗ d ) % n = = y (x+k1*d)\%n==y (x+k1d)%n==y,即 d ∗ k 1 + n ∗ k 2 = = y − x d*k1+n*k2==y-x dk1+nk2==yx,因此 g c d ( d , n ) ∤ ( y − x ) gcd(d,n) \nmid (y-x) gcd(d,n)(yx)则无解,否则解为 d ∗ k 1 ′ + n ∗ k 2 ′ = = g c d ( d , n ) d*k1'+n*k2'==gcd(d,n) dk1+nk2==gcd(d,n)时的一组 ( k 1 ′ , k 2 ′ ) (k1',k2') (k1,k2),而 ( k 1 , k 2 ) = = ( y − x ) / g c d ( d , n ) ∗ ( k 1 ′ , k 2 ′ ) (k1,k2)==(y-x)/gcd(d,n)*(k1',k2') (k1,k2)==(yx)/gcd(d,n)(k1,k2) d ∗ k 1 + n ∗ k 2 = = y − x d*k1+n*k2==y-x dk1+nk2==yx的一组解。但由于要使得翻跟头数最小,即 k 1 k1 k1最小为 m i n k 1 mink1 mink1,我们还需操作。由方程的解特性可得:
{ k k 1 = k 1 + t ∗ n g c d ( n , d ) k k 2 = k 2 − t ∗ d g c d ( n , d ) \left\{ \begin{array}{lr} kk1=k1+t*\frac{n}{gcd(n,d)} \\ kk2=k2-t*\frac{d}{gcd(n,d)} \\ \end{array} \right. {kk1=k1+tgcd(n,d)nkk2=k2tgcd(n,d)d
由此,为使得 k k 1 kk1 kk1最小为 m i n k 1 mink1 mink1 k k 1 kk1 kk1需要是最小正数,也就是不能再被 n g c d ( n , d ) \frac{n}{gcd(n,d)} gcd(n,d)n除,也就相当于在保证为正数的前提下 % n g c d ( n , d ) \%\frac{n}{gcd(n,d)} %gcd(n,d)n

代码如下:

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
    if(!b) {x=1,y=0;return a;}
    LL d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}
int main()
{
    LL t,n,d,x,y;
    cin>>t;
    while(t--)
    {
        cin>>n>>d>>x>>y;
        LL x0,y0;
        LL dd=exgcd(d,n,x0,y0);
        if((y-x)%dd) cout<<"Impossible\n";
        else
        {
            LL k=(y-x)/dd;
            x0*=k;y0*=k;
            cout<<(x0%(n/dd)+(n/dd))%(n/dd)<<'\n';
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值