二元一次方程的定义:
含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。
解二元一次方程:
众所周知,解一个单一的二元一次方程是十分困难的,只能用一种简单的方法————枚举(暴力出奇迹)。可是这是不可能,因为我们的时间复杂度是爆炸的,所以我们需要一种时间复杂度低的算法来解决这种困难。
那么是时候引申出此博客的主角了——拓展欧几里得算法。可是在提出此前,我们需要掌握一个简单数学知识(最大公因数与最小公倍数)。