解二元一次方程————拓展欧几里得算法

本文介绍了二元一次方程的定义及其解法,重点讲解了如何利用拓展欧几里得算法高效求解二元一次方程。通过阐述最大公因数和最小公倍数的概念,结合欧几里得算法的证明,展示了拓展欧几里得算法在解方程中的应用,提供了一种求解的代码实现。注意,该方法仅适用于存在整数解的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二元一次方程的定义:

    含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

    适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。

解二元一次方程:

    众所周知,解一个单一的二元一次方程是十分困难的,只能用一种简单的方法————枚举(暴力出奇迹)。可是这是不可能,因为我们的时间复杂度是爆炸的,所以我们需要一种时间复杂度低的算法来解决这种困难。

    那么是时候引申出此博客的主角了——拓展欧几里得算法。可是在提出此前,我们需要掌握一个简单数学知识(最大公因数与最小公倍数)。

最大公

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值