【进阶指南】数据结构 - 一个简单的整数问题【差分+BIT】

这篇博客介绍了如何使用位运算技巧(BIT,Binary Indexed Tree)来高效地处理区间查询和单点修改的问题。文章通过一个具体的实例展示了如何在给定长度的数列上实现这类操作,并给出了相应的C++代码实现。代码中,首先建立差分数组并在差分数组上进行区间修改和单点查询,从而达到高效计算的目的。
摘要由CSDN通过智能技术生成

Date:2022.04.01
题意描述:
给定长度为 N 的数列 A,然后输入 M 行操作指令。
第一类指令形如 C l r d,表示把数列中第 l∼r 个数都加 d。
第二类指令形如 Q x,表示询问数列中第 x 个数的值。
对于每个询问,输出一个整数表示答案。
输入格式
第一行包含两个整数 N 和 M。
第二行包含 N 个整数 A[i]。
接下来 M 行表示 M 条指令,每条指令的格式如题目描述所示。
输出格式
对于每个询问,输出一个整数表示答案。
每个答案占一行。
数据范围
1≤N,M≤105,
|d|≤10000,
|A[i]|≤109
输入样例:
10 5
1 2 3 4 5 6 7 8 9 10
Q 4
Q 1
Q 2
C 1 6 3
Q 2
输出样例:
4
1
2
5

思路:BIT是区间查询、单点修改,若改为单点查询、区间修改,如何将区间修改映射为单点修改,同时将单点查询映射到区间查询?可以在原数组的差分数组上操作区间查询(查询哪点就在哪点求和)、单点修改(原数组区间修改 [ l , r ] [l,r] [l,r]对应在差分数组上为修改 l l l r + 1 r+1 r+1两点)。
代码如下:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+10;
typedef long long LL;
LL n,m,k,a[N],b[N],tr[N];
LL lowbit(LL x) {return x&-x;}
void add(LL x,LL c)
{
    for(int i=x;i<=n;i+=lowbit(i)) tr[i]+=c;
}
LL getsum(LL x)
{
    LL res=0;
    for(int i=x;i;i-=lowbit(i)) res+=tr[i];
    return res;
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) {cin>>a[i];b[i]=a[i]-a[i-1];add(i,b[i]);}
    while (m -- )
    {
        char op[2];LL l,r,d;
        cin>>op;
        if(*op=='Q') 
        {
            cin>>d;
            cout<<getsum(d)<<'\n';
        }
        else
        {
            cin>>l>>r>>d;
            add(l,d);
            add(r+1,-d);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值