P1438 差分 + BIT

这篇博客介绍了两种利用Binary Indexed Tree(BIT,也称作 Fenwick Tree)优化处理区间等差数列更新和查询的方法。解法一是通过差分处理和多项式表示维护区间信息,解法二是直接更新BIT以维护等差数列的前缀和。这两种方法都提高了区间操作的效率,适用于处理动态变化的等差数列问题。
摘要由CSDN通过智能技术生成
题意

传送门 P1438

题解

考虑将区间上增加的等差数列差分处理,以方便更新区间信息,再求前缀和。

解法一

B I T BIT BIT 维护前缀和,等差序列端点的差分值,单点更新;区间内的差分值是一个常数,考虑将前缀和结果表示为索引值 i i i n n n 次多项式,用 n + 1 n+1 n+1 B I T BIT BIT 数组维护;这里多项式次数为 1 1 1,即前缀和等于 s u m ( b i t 0 , i ) + i × s u m ( b i t 1 , i ) sum(bit0,i) + i\times sum(bit1,i) sum(bit0,i)+i×sum(bit1,i)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 100005
typedef long long ll;
int n, m, a[maxn];
ll bit0[maxn], bit1[maxn];

void add(ll *bit, int i, int x)
{
    while (i <= n)
    {
        bit[i] += x;
        i += i & -i;
    }
}

ll sum(ll *bit, int i)
{
    ll s = 0;
    while (i > 0)
    {
        s += bit[i];
        i -= i & -i;
    }
    return s;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", a + i);
    }
    while (m--)
    {
        int op;
        scanf("%d", &op);
        if (op == 1)
        {
            int l, r, k, d;
            scanf("%d%d%d%d", &l, &r, &k, &d);
            // 区间的端点
            add(bit0, l, k);
            add(bit0, r + 1, -k + (l - r) * d);
            // 区间内部
            add(bit0, l, -l * d);
            add(bit0, r + 1, r * d);
            add(bit1, l, d);
            add(bit1, r + 1, -d);
        }
        else
        {
            int p;
            scanf("%d", &p);
            printf("%lld\n", a[p] + sum(bit0, p) + p * sum(bit1, p));
        }
    }
    return 0;
}
解法二

改造 B I T BIT BIT 维护等差数列的前缀和。对于每一个等差数列,在区间右端点更新初项以及等差值,用两个等差数列的差来表示区间上的等差数列。做法有点类似分块的思想,更新时,对于包含当前区间的更大的区间,更新数列初值;查询时,除了统计数列初值,还要计算查询节点与当前查询区间右端点的距离乘以等差值引入的增量。

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 100005
typedef long long ll;
int n, m, a[maxn];
ll bit_k[maxn], bit_d[maxn];

void add(int i, int k, int d)
{
    while (i <= n)
    {
        bit_k[i] += k;
        bit_d[i] += d;
        int l = i & -i;
        k += d * l;
        i += l;
    }
}

ll sum(int i)
{
    ll s = 0;
    int j = i;
    while (j > 0)
    {
        s += bit_k[j] + (i - j) * bit_d[j];
        j -= j & -j;
    }
    return s;
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", a + i);
    }
    while (m--)
    {
        int op;
        scanf("%d", &op);
        if (op == 1)
        {
            int l, r, k, d;
            scanf("%d%d%d%d", &l, &r, &k, &d);
            add(l, k, d);
            add(r + 1, -(k + (r + 1 - l) * d), -d);
        }
        else
        {
            int p;
            scanf("%d", &p);
            printf("%lld\n", a[p] + sum(p));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值