题意
传送门 P1438
题解
考虑将区间上增加的等差数列差分处理,以方便更新区间信息,再求前缀和。
解法一
B I T BIT BIT 维护前缀和,等差序列端点的差分值,单点更新;区间内的差分值是一个常数,考虑将前缀和结果表示为索引值 i i i 的 n n n 次多项式,用 n + 1 n+1 n+1 个 B I T BIT BIT 数组维护;这里多项式次数为 1 1 1,即前缀和等于 s u m ( b i t 0 , i ) + i × s u m ( b i t 1 , i ) sum(bit0,i) + i\times sum(bit1,i) sum(bit0,i)+i×sum(bit1,i)
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 100005
typedef long long ll;
int n, m, a[maxn];
ll bit0[maxn], bit1[maxn];
void add(ll *bit, int i, int x)
{
while (i <= n)
{
bit[i] += x;
i += i & -i;
}
}
ll sum(ll *bit, int i)
{
ll s = 0;
while (i > 0)
{
s += bit[i];
i -= i & -i;
}
return s;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d", a + i);
}
while (m--)
{
int op;
scanf("%d", &op);
if (op == 1)
{
int l, r, k, d;
scanf("%d%d%d%d", &l, &r, &k, &d);
// 区间的端点
add(bit0, l, k);
add(bit0, r + 1, -k + (l - r) * d);
// 区间内部
add(bit0, l, -l * d);
add(bit0, r + 1, r * d);
add(bit1, l, d);
add(bit1, r + 1, -d);
}
else
{
int p;
scanf("%d", &p);
printf("%lld\n", a[p] + sum(bit0, p) + p * sum(bit1, p));
}
}
return 0;
}
解法二
改造 B I T BIT BIT 维护等差数列的前缀和。对于每一个等差数列,在区间右端点更新初项以及等差值,用两个等差数列的差来表示区间上的等差数列。做法有点类似分块的思想,更新时,对于包含当前区间的更大的区间,更新数列初值;查询时,除了统计数列初值,还要计算查询节点与当前查询区间右端点的距离乘以等差值引入的增量。
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define maxn 100005
typedef long long ll;
int n, m, a[maxn];
ll bit_k[maxn], bit_d[maxn];
void add(int i, int k, int d)
{
while (i <= n)
{
bit_k[i] += k;
bit_d[i] += d;
int l = i & -i;
k += d * l;
i += l;
}
}
ll sum(int i)
{
ll s = 0;
int j = i;
while (j > 0)
{
s += bit_k[j] + (i - j) * bit_d[j];
j -= j & -j;
}
return s;
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
{
scanf("%d", a + i);
}
while (m--)
{
int op;
scanf("%d", &op);
if (op == 1)
{
int l, r, k, d;
scanf("%d%d%d%d", &l, &r, &k, &d);
add(l, k, d);
add(r + 1, -(k + (r + 1 - l) * d), -d);
}
else
{
int p;
scanf("%d", &p);
printf("%lld\n", a[p] + sum(p));
}
}
return 0;
}