【进阶指南】蒙德里安的梦想【状压DP】

这篇博客介绍了如何利用动态规划解决将N×M棋盘分割成1×2长方形的问题。通过定义状态f[i][j]表示已放完前i-1列,第i列状态为j的合法方案数,通过预处理找到所有合法的k值,确保没有连续奇数个0,最终得到f[m+1][0]作为答案。博客提供了思路和代码实现。
摘要由CSDN通过智能技术生成

Date:2022.04.07
题意描述:
求把 N×M 的棋盘分割成若干个 1×2 的长方形,有多少种方案。
例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3 时,共有 3 种方案。
如下图所示:在这里插入图片描述
输入格式
输入包含多组测试用例。
每组测试用例占一行,包含两个整数 N 和 M。
当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。
输出格式
每个测试用例输出一个结果,每个结果占一行。
数据范围
1≤N,M≤11
输入样例:
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
输出样例:
1
0
1
2
3
5
144
51205

思路:问题等价于我们找定一个方向(比如说横向),只在横向放小方格,放到一定状态后剩下的位置只能放竖着的小方格的总方案数。
f [ i ] [ j ] : f[i][j]: f[i][j]:已放完前 i − 1 i-1 i1列(也就是说之后不再回过头来在前 i − 1 i-1 i1列里放任何1*2的方格),第 i i i列状态为 j j j的合法方案数。
首先什么是合法?
答:已经放完的列,每一列都不能有“连续奇数个 0 0 0”,因为这样必然放不满1*2的方格。
我们观察状态转移方程的最后一步,就是在第 i − 1 i-1 i1列放上状态为 j j j的1*2小方格。首先我们发现我们的 j j j必须附加在所有 f [ i − 1 ] [ k ] f[i-1][k] f[i1][k]上,这里的 f [ i − 1 ] [ k ] f[i-1][k]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值