Date:2022.04.07
题意描述:
求把 N×M 的棋盘分割成若干个 1×2 的长方形,有多少种方案。
例如当 N=2,M=4 时,共有 5 种方案。当 N=2,M=3 时,共有 3 种方案。
如下图所示:
输入格式
输入包含多组测试用例。
每组测试用例占一行,包含两个整数 N 和 M。
当输入用例 N=0,M=0 时,表示输入终止,且该用例无需处理。
输出格式
每个测试用例输出一个结果,每个结果占一行。
数据范围
1≤N,M≤11
输入样例:
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
输出样例:
1
0
1
2
3
5
144
51205
思路:问题等价于我们找定一个方向(比如说横向),只在横向放小方格,放到一定状态后剩下的位置只能放竖着的小方格的总方案数。
f [ i ] [ j ] : f[i][j]: f[i][j]:已放完前 i − 1 i-1 i−1列(也就是说之后不再回过头来在前 i − 1 i-1 i−1列里放任何1*2的方格),第 i i i列状态为 j j j的合法方案数。
首先什么是合法?
答:已经放完的列,每一列都不能有“连续奇数个 0 0 0”,因为这样必然放不满1*2的方格。
我们观察状态转移方程的最后一步,就是在第 i − 1 i-1 i−1列放上状态为 j j j的1*2小方格。首先我们发现我们的 j j j必须附加在所有 f [ i − 1 ] [ k ] f[i-1][k] f[i−1][k]上,这里的 f [ i − 1 ] [ k ] f[i-1][k]