Dp-状态压缩:蒙德里安的梦想 详解版

在这里插入图片描述
题目链接:https://www.acwing.com/problem/content/description/293/

思路分析:

这种棋盘类型的问题+数据范围。看起来就巨像状态压缩。

把整个棋盘划分为若干个1x1的小格子,那么,问题就转化为了用1x2的小长方形去将整个棋盘填充满,总共有多少种方案。此外,注意到,当我们将所有横向的小长方形都已经摆放(填充)完成后,所有纵向的小长方形的摆放方式也就唯一确定了,那么,总的方案数就等于摆完所有横向长方形的方案数。所以,我们只用考虑如何枚举横向长方形的摆放即可

状态表示

因此,我们全篇只需要考虑摆放横着的小长方形。这时候我们需要以每一列为不同的阶段进行划分。

其实,反过来也一样的啦,当我们只考虑竖着拜访的小长方形的时候,我们需要以不同的行 为阶段进行划分。

状态压缩dp的经典问题:对于每一列不同的m个格子,对应的二进制数的不同的位表示什么?

如果对应的位置有伸出来小格子就为1,否则为0。只能这样表示,要不怎么表示呢?
在这里插入图片描述
因此f[i][j]表示,前i-1列已经摆好,第i列的伸出情况的对应二进制表示为j的所有情况的种数。

ok,接下来就是需要考虑i-1到i列如何进行合法地转换?

状态转换

显然,对于f[i][j], 需要考虑到f[i-1][k], 其中k在是i-1列中,可以合法地转移到i列,且第i列状态为j的所有可能情况。

f[i][j] = Σf[i-1][k]

现在我们考虑,对于j,哪些k是合法的即可。

  • 转移的合法性限制
    如果j的某一位为1,代表从i-1列到i列放了一个小正方形。显然,此时,i-2列到i-1就不能再放了,否则会有重叠,也就是说i-1列中,这个对应的位就不能再是1了。合法的转移对应的数学表示为:j & k == 0

  • i-1列自身的合法性限制

以下代码判断一个数i,是否有连续为偶数个0


			st[i] = true;
//            记录一列中0的个数
            int cnt = 0;
            for (int j = 0; j < n; j++) {
				// 找出来位置上为1的二进制位
                if (i >> j & 1) {
                	// 如果这个1之前连续的0为奇数
                    if (cnt & 1) {
                        st[i] = false;
                        break;
                    }
                }
                // 为偶数,则cnt++
                else cnt++;
            }
            // 特判一下最后一位为0的情况。
			if (cnt & 1) st[i] = false;

对于i-1列的摆放状态,所有连续区域来说,这些区域的长度必须为偶数,否则放不下竖着的小方块了。i-1列的合法性对应的数学表示为:st[j | k] == true
解释一下:
我们要考虑的是第i-1列(第i-1列是这里的主体)中从第i-2列横插过来的,还要考虑自己这一列(i-1列)横插到第i列的。比如 第i-2列插过来的是k=10101,第i-1列插出去到第i列的是 j =01000 。 那么合在第i-1列,到底有多少个1呢?自然想到的就是这两个操作共同的结果:两个状态或。 j | k = 01000 | 10101 = 11101
这个 j|k 就是当前 第i-1列的到底哪几行是横着放格子的
因此,最后这个状态转移的代码表示为:

if ((j & k) == 0 && st[j | k]) 
{
	f[i][j] += f[i - 1][k]; 
}

状态初始化

f[0][0] = 1, f是对状态的计数,不是像线性dp那样,对什么最大值最小值的计数。因此,什么都不放也是一种状态

目标状态

f[m][0] 表示第m + 1列不能有东西捅出来。同时,前m-1列都已经放好了。那么因此,第m列也就确定了。

有了以上的分析,代码就顺理成章了。

#include<bits/stdc++.h>
using namespace std;
const int N = 12, M = 1 << N;
int st[M];
long long f[N][M];


int main(){
    int n, m;
    while (cin >> n >> m && (n || m)){

        for (int i = 0; i < 1 << n; i ++){
            int cnt = 0;
            st[i] = true;
            for (int j = 0; j < n; j ++)
                if (i >> j & 1){
                    if (cnt & 1) st[i] = false; // cnt 为当前已经存在多少个连续的0
                    cnt = 0;
                }
                else cnt ++;
            if (cnt & 1) st[i] = false; // 扫完后要判断一下最后一段有多少个连续的0
        }

        memset(f, 0, sizeof f);
        f[0][0] = 1;
        // 枚举列
        for (int i = 1; i <= m; i ++)
        	// 枚举每一列中所有状态
            for (int j = 0; j < 1 << n; j ++)
            	// 枚举i-1列的所有状态
                for (int k = 0; k < 1 << n; k ++)
                	// 找到合法的转移和合法的i-1列的状态j | k
                    if ((j & k) == 0 && (st[j | k])) 
                        f[i][j] += f[i - 1][k];      
        cout << f[m][0] << endl;
    }
    return 0;
}

但是,我们发现,枚举所有的摆放状态时,共有2^12种情况,显然,这里边有好多数,他们都是有连续奇数个0的,是不满足的。这会很大程度上浪费时间。因此,我们考虑,先在st数组中预处理所有合法的情况,再预处理所有合法转移到state中,这会很大程度节约时间。对应代码如下。

//提高课版本
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>

using namespace std;

typedef long long LL;

const int N=12, M=1<<N;

int n,m;
LL f[N][M];
vector<int> state[M];//存放每个合法的状态
bool st[N];

int main()
{
    while(cin>>n>>m, n||m)
    {
        //第一步预处理,把同一列中奇数
        //个零连在一块的情况找出来
        for(int i=0;i<1<<n;i++)
        {
            int cnt=0;
            st[i]=true;
            for(int j=0;j<n;j++)
                if(i>>j &1)
                {
                    if(cnt&1)
                    {
                        st[i]=false;
                        break;
                    }
                    cnt=0;
                }
                else cnt++;
            
            if(cnt&1) st[i]=false;
        }
        
        //第二步预处理,排除所有的占据i和i+1列的格子
        //和占据i-1和i列的格子重叠在一起的情况
        //同时,把所有的合法情况加入到state中
        for(int i=0;i<1<<n;i++)//枚举第i列
        {
            state[i].clear();//因为有很多轮输入,所有要先把上一轮样例的情况清空了
            for(int j=0;j<1<<n; j++)//枚举第i-1列
                if((i&j)==0&&st[i|j])//如果不重叠并且有偶数个0
                    //相邻的两列最多有2^11 * 2^11种情况
                    //我们只存储合法的情况
                    state[i].push_back(j);
        }
        
        //每一次都要把f数组初始化
        memset(f,0,sizeof f);
        f[0][0]=1;
        for(int i=1;i<=m;i++)//枚举每一列
            for(int j=0;j<1<<n;j++)//枚举每一列的所有状态
                for(auto k: state[j])//只遍历有效的状态即可
                    f[i][j]+=f[i-1][k];
                    
        cout<<f[m][0]<<endl;
    }
    
    return 0;
    
}
  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值