Hive优化(5)之选择合适的map数

Hive是基于Hadoop分布式框架下的数据仓库解决方案,可以方便地对数据进行清洗、转化和加载。Hive处理海量数据是数据仓库的基本需求,而如何通过hive充分利用Hadoop集群的分布式并行功能就至关重要。如果不能充分利用分布式并行处理,那么处理大数据量就会变得低效。而一张数据表需要多少个map来处理和一个map处理多少数据记录,都会影响到海量数据处理的效率。
--------------------- 
作者:lpxuan151009 
来源:CSDN 
原文:https://blog.csdn.net/lpxuan151009/article/details/7980568 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值