[PSP3000完美破~解]5.03彻底告别刷机!让3K和V3可关机

1月19日消息,忠贞炙烈之炎发布的 503kxploit_v4终于能让PSP3000/2000V3 5.03主机无须再刷图而进行XX了!



QUOTE:
破~解程序下载:注意根据你的PSP主机型号选择对应的版本下载

PSP 2000V3 5.03主机适用版下载:   PSP 2000 v3.rar (5.35 MB)

PSP 3000 5.03主机适用版下载:   PSP 3000.rar (5.35 MB)

安装说明:
  
1.下载文件,将其解压,得到名为“PSP”的文件夹;


2.将解压得到的“PSP”文件夹直接拷贝至PSP记忆棒根目录下覆盖即可,覆盖并不会影响你文件夹内的其它文件。(注:PSPgo就直接拷贝到主机自带的16G存储的根目录下即可)

3.将PSP主机的彻底关机(关机键向↑上推2秒以上或者扣电池)

4.再次打开PSP主机,进入游戏目录下(游戏-Memory Stick™),运行503 kxploit程序。

5.稍等片刻,程序会自动加载到5.03系统。等XMB界面重新出现的时候,就已经大功告成了。

注:有玩家提示说,至少需要在5.03系统下刷图XX过的才能直接运行该程序,成功之后,赶紧把那些图删了吧,看烦了。  
机系统查看方法:XMB界面(就是最常见的PSP的桌面)→进入主机设定→主机信息。

QUOTE:
此外需要提醒大家的是, 关机之后,重新运行该程序即可。

经测试,此软件在本人的PSP3000上运行很稳定,反复扣电池测试,启动后运行503kxploit,一键即破。
首次使用,须恢复一次出厂设置,以后用就不需要再恢复! 方法: 1、删除你psp中原来的所有图片h.bin,压我的压缩包到你的卡 2、主题选择为“原始”(非常重要!!!后面说原因) 3、主设定->选简体中文,时区北京 (有人说第3步骤可以省略,大家看情况酌情而定吧。如果感觉成功率不高可以忽略第3步) 4、主设定->文字设定为第二个Multilingual Latin1(850) 5.打开PSP图片栏目,这个时候会显示一个“ChickHEN”的目录,下面会提示有5张图片(5 Images),此时按一下方向键的下方向键(相当于确定键),让图片滚动,之后不要做任何操作,只需要耐心等待。 6.如果一切顺利,屏幕以及记忆棒读卡灯(上面的橙色灯)应该会闪烁,这时候也就意味着HEN顺利加载。 7.几秒过后你的PSP将会重新启动,此时检查您的PSP的系统版本,会从原来的官方系统版本变为:“ 5.03 ChickHEN ”,到目前为止,恭喜您的HEN加载成功! 8.最后,将部分自制游戏或者软件放置于记忆棒PSP/GAME目录下,在PSP游戏栏目下找到相关游戏或软件,即可对软件进行测试! 注意事项: 1、使用本人的刷机包前,请务必删除记忆棒内之前旧的图片以及h.bin刷机文件。 2、不可更改主题,更改的结果是不能100%进入HENR2,如果你做了更改,即使你又改回来原始主题也不行,必须恢复出厂设置了! 3psp中不可以有其他任何图片,哪怕不在一个文件夹也不行!必须的!
### 如何对Ollama DeepSeek模型进行微调 对于特定于Ollama DeepSeek模型的微调过程,虽然具体的细节可能依赖于该模型的独特架构设计目标,但通常情况下,微调大型语言模型的过程遵循相似的原则。基于已有的关于其他模型如OpenAI系列以及BERT微调的信息[^1],可以推测出针对DeepSeek模型的一般性指导原则。 #### 准备环境与数据集 为了有效地微调任何深度学习模型,准备阶段至关重要。这包括但不限于安装必要的库、框架支持工具;获取并清理用于训练的数据集。特别是当涉及到像DeepSeek这样的高级自然语言处理(NLP)应用时,高质量标注过的文本数据是必不可少的资源。 #### 配置超参数设置 合理的超参数配置能够显著影响最终性能表现。这些参数涵盖了批量大小(batch size),学习率(learning rate),优化器(optimizer type)的选择等方面。对于类似于DeepSeek的大规模预训练模型而言,在初始几轮迭代中采用较小的学习速率可能是明智之举,以便更平稳地收敛到局部最优附近[^2]。 #### 实施迁移学习策略 考虑到DeepSeek已经过大规模语料上的广泛预训练,直接应用于目标任务之前仅需对其进行少量调整即可获得不错的效果。具体来说: - **冻结部分层**:保持某些底层网络结构不变而只更新高层权重; - **引入新任务特有的组件**:比如增加额外分类头来适应新的业务场景需求; ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "ollama/deepseek" num_labels = 2 # 假设是一个二元分类问题 # 加载预训练模型,并指定输出类别数 model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train() ``` 此代码片段展示了如何利用Hugging Face Transformers库加载预训练好的DeepSeek模型,并将其适配至一个新的序列分类任务上。注意这里假设了一个简单的二类分类案例作为示范用途[^3]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值