信息学奥赛一本通 1318:【例5.3】自然数的拆分

这篇博客介绍了如何运用深度搜索算法解决自然数拆分的问题,避免拆分为自身的情况。通过递归的深搜策略,从数字n中拆分出一系列大于等于1的整数,使得它们的和等于n。代码示例展示了如何实现这一过程,并在找到解时输出等式。
摘要由CSDN通过智能技术生成

【题目链接】

ybt 1318:【例5.3】自然数的拆分

【题目考点】

1. 深搜

【解题思路】

解法1:深搜

每次搜索拆分出一个的数字。每次拆分出的数字应该大于等于上次拆分出的数字。用一个数组记录每次拆分出的数字。
如果剩下的数字为0,那么拆分完成,根据每次拆分出的数字输出等式。
如果剩下的数字小于要拆分出的数字,那么不做拆分。
【注意】题目要求要排除n=n的情况,所以在做拆分时,拆分出的数字要小于n。

【题解代码】

解法1:深搜
#include<bits/stdc++.h>
using namespace std;
int n, a[10001], ai;//数组a记录每次拆分出的数字 
void show()//输出等式 
{
    cout << n << "=";
    cout << a[1];
    for(int i = 2; i <= ai; ++i)
        cout << '+' << a[i];
    cout << endl;
}
void dfs(int m, int st)//还剩下数字m需要拆分,拆分出的数字要大于等于st 
{
    for(int i = st; i <= m && i < n; ++i)//不可以拆分出数字n,排除n=n的情况。 
    {//拆分出一个数字i 
        a[++ai] = i;
        if(m - i == 0)//找到解 
            show();
        else if(m - i > 0)//如果还可以拆分 
            dfs(m - i, i);//这次拆分出数字i,下一次要拆分数字m-i,拆分出的数字最小为i 
        ai--;//状态还原 
    }
}
int main()
{
    cin >> n;
    dfs(n, 1);//从数字n中拆分数字,拆出的最小数字为1 
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值