洛谷 P1164 小A点菜

【题目链接】

洛谷 P1164 小A点菜

【题目考点】

1. 动态规划:背包问题

2. 01背包:求填满背包的方案数

问题定义

给定n件物品的重量,以及一个空间为m的背包,在n件物品中选择一些物品放入背包将背包填满,没有剩余空间。求能将背包填满的方案数量。

1. 状态定义
  • 集合:将n件物品放入空间为m的背包的方案
  • 限制:物品范围,背包空间
  • 属性:总重量
  • 条件:为m
  • 统计量:方案数

状态定义dp[i][j]表示在前i件物品中选择物品填满j的背包的方案总数。
初始状态dp[i][0]前i个物品中选择物品,填满空间大小为0的背包,不放物品即可,这也是一种方案。因此dp[i][0]=1。注意,包括dp[0][0]=1

2. 状态转移方程

w[i]为第i个物品的重量
分割集合:以第i物品是否放入背包分割集合

  • 子集1:如果不将第i物品放入背包,那么在前i件物品中选择物品填满大小为j的背包的方案数,即为在前i-1件物品中选择物品填满大小为j的背包的方案数,即dp[i-1][j]
  • 子集2:如果第i物品可以放入背包(即j >= w[i]),且确定将第i物品放入背包,此时背包剩下空间为j-w[i]。那么在前i件物品中选择物品填满大小为j的背包的方案数,即为在前i-1件物品中选择物品放入空间为j-w[i]的背包的方案数,即dp[i-1][j-w[i]]
  • 以上两种情况得到的方案都是可行的方案,因此将以上两类方案加和,即为在前i件物品中选择物品填满大小为j的背包的方案数。即dp[i][j] = dp[i-1][j] + dp[i-1][j-w[i]]

该解法为将状态定义为二维数组,时间复杂度为 O ( m ∗ n ) O(m*n) O(mn),空间复杂度为 O ( m ∗ n ) O(m*n) O(mn)
可以进行滚动数组优化,定义状态时使用一维数组而不是二维数组,时间复杂度为 O ( m ∗ n ) O(m*n) O(mn),空间复杂度为 O ( m ) O(m) O(m)

【解题思路】

根据本题题意,每种菜只能点一次,那么这题就可以归类为01背包问题的范畴。
本题为:01背包求填满背包的方案数问题。
该题中,给定的N种菜的价格对应每件物品的重量,总钱数M元对应背包大小。用上述方法求解即可。

【题解代码】

解法1:二维状态
#include<bits/stdc++.h>
using namespace std;
#define N 105
#define M 10005
int dp[N][M], a[N];//a[i]:第i道菜的价钱 dp[i][j]:前i个菜中选择一些菜的价钱加和为j的方案数 
int n, m;
int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; ++i)
         cin >> a[i];
    for(int i = 0; i <= n; ++i)//设初始状态 
        dp[i][0] = 1;//前i道菜中选择一些菜花0元,不选即可,有1种方案。 
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
        {
            if(j >= a[i])
                dp[i][j] = dp[i-1][j] + dp[i-1][j-a[i]];
            else 
                dp[i][j] = dp[i-1][j];
        }
    cout << dp[n][m];
    return 0;
}
解法2:滚动数组优化 一维状态
#include<bits/stdc++.h>
using namespace std;
#define N 105
#define M 10005
int dp[M], a[N];//a[i]:第i道菜的价钱 dp[i][j]:前i个菜中选择一些菜的价钱加和为j的方案数 
int n, m;
int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; ++i)
         cin >> a[i];
    dp[0] = 1;//前i道菜中选择一些菜花0元,不选即可,有1种方案。 
    for(int i = 1; i <= n; ++i)
        for(int j = m; j >= a[i]; --j)
            dp[j] = dp[j] + dp[j-a[i]];
    cout << dp[m];
    return 0;
}
这道题目是一道经典的背包问题,要求从给定的 n 种菜品中选出若干个菜品,使得它们的价格之和恰好为 m。 我们可以使用动态规划的方法来解决这个问题。具体来说,我们可以定义一个二维数组 f[i][j],表示从前 i 种菜品中选,总价值恰好为 j 的方案数。初始状态为 f[0][0] = 1,表示从 0 种菜品中选出总价值为 0 的方案数为 1(即不选任何菜品)。 然后,我们可以使用状态转移方程 f[i][j] = f[i-1][j] + f[i-1][j-a[i]],表示要么不选第 i 种菜品,此时方案数为 f[i-1][j];要么选第 i 种菜品,此时方案数为 f[i-1][j-a[i]],因为选了这个菜品后,剩余的价值就是 j-a[i]。 最后,我们输出 f[n][m],即从 n 种菜品中选出总价值恰好为 m 的方案数。 下面是 AC 代码和一些细节处理的实现建议: ```c++ #include <iostream> #include <cstring> using namespace std; const int MAXN = 105; const int MAXM = 10005; int f[MAXN][MAXM]; // f[i][j] 表示从前 i 种菜品中选,总价值恰好为 j 的方案数 int a[MAXN]; // a[i] 表示第 i 种菜品的价格 int main() { int n, m; cin >> n >> m; for (int i = 1; i <= n; i++) { cin >> a[i]; } memset(f, 0, sizeof(f)); // 初始化为 0 f[0][0] = 1; // 初始状态 for (int i = 1; i <= n; i++) { for (int j = a[i]; j <= m; j++) { // 注意这里要从 a[i] 开始枚举 f[i][j] = f[i-1][j] + f[i-1][j-a[i]]; // 状态转移方程 } } cout << f[n][m] << endl; // 输出最终答案 return 0; } ``` 需要注意的细节有: 1. 状态转移方程中,第二个下标 j 要从 a[i] 开始枚举,因为如果 j < a[i],则选第 i 种菜品的话,总价值就会小于 a[i],不符合题意。 2. 初始状态要赋值为 1,因为从 0 种菜品中选出总价值为 0 的方案数只有一种(即不选任何菜品)。 3. 可以使用 memset 函数将 f 数组初始化为 0。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值