【题目链接】
结果要用long long表示
【题目考点】
1. 动态规划:完全背包问题
求方案数
【解题思路】
1. 状态定义
- 集合:选择货币的方案
- 限制:选择哪些种类面值的货币,凑多少钱
- 属性:货币面值加和
- 条件:等于m
- 统计量:方案数
状态定义:dp[i][j]
:在前i种货币中选择货币凑j元钱的方案数。
初始状态:前i种货币中选择货币凑0元的方案数为1,不选任何货币也算一种方案。dp[i][0] = 1
2. 状态转移方程
记第i种货币的面值为a[i]
集合:在前i种货币中选择货币凑j元钱的方案。
分割集合:是否选择第i种面值的货币
- 子集1:如果不选择第i种面值的货币,那么在前i种货币中选择货币凑j元的方案数,为在前i-1种货币中选择货币凑j元的方案数,为
dp[i-1][j]
- 子集2:在要凑的钱数j大于等于第i种货币的面值a[i]的情况下,如果选择第i种货币,下一次还可以选择第i种货币。那么还需要在前i种货币中选择货币凑j-a[i]元。在前i种货币中选择货币凑j元的方案数,为在前j种货币中选择货币凑j-a[i]元的方案数,为
dp[i][j-a[i]]
- 以上两种情况得到的方案数加和,即为在前i种货币中选择货币凑j元的方案数。
dp[i][j] = dp[i-1][j] + dp[i][j-a[i]]
原解法时间复杂度: O ( m ∗ n ) O(m*n) O(m∗n),空间复杂度: O ( m ∗ n ) O(m*n) O(m∗n)。
可以对该问题使用滚动数组优化,时间复杂度: O ( m ∗ n ) O(m*n) O(m∗n),空间复杂度 O ( n ) O(n) O(n)。
【题解代码】
解法1:基本解法,二维状态
#include<bits/stdc++.h>
using namespace std;
#define N 25
#define M 4005
long long m, n, dp[N][M], a[N];//dp[i][j]:前i种货币凑j元的方案数
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; ++i)
cin >> a[i];
for(int i = 0; i <= n; ++i)//前i种货币中选择货币凑0元的方案数为1
dp[i][0] = 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
{
if(j >= a[i])
dp[i][j] = dp[i-1][j] + dp[i][j-a[i]];
else
dp[i][j] = dp[i-1][j];
}
cout << dp[n][m];
return 0;
}
解法2:滚动数组优化,一维状态
#include<bits/stdc++.h>
using namespace std;
#define N 25
#define M 4005
long long m, n, dp[M], a[N];//dp[i][j]:前i种货币凑j元的方案数
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; ++i)
cin >> a[i];
dp[0] = 1;
for(int i = 1; i <= n; ++i)
for(int j = a[i]; j <= m; ++j)
dp[j] = dp[j] + dp[j-a[i]];
cout << dp[m];
return 0;
}