【题目链接】
ybt 1275:【例9.19】乘积最大
原题为:信息学奥赛一本通 1912:【00NOIP普及组】乘积最大
原题中N最大为40,必须用高精度数字来做。该题中N最大为10,可以用long long类型来做。
【题目考点】
1. 动态规划:区间动规
【解题思路】
0. 分析结果的最大值
在一个最多10位数中,插入最多6个乘号,有最多7个数字相乘。
将拆分出的每个数字都扩大为大于等于它的最小的10的幂(两位数及100变为100,三位数及1000变为1000,x位数及
1
0
x
10^x
10x变为
1
0
x
10^x
10x),乘积结果为
1
0
n
10^n
10n,n为原数字的位数,n最大为10,所以结果最大为
1
0
10
10^{10}
1010,可以用long long
表示。
1. 处理得到第i位到第j位截取出的数字
预先处理,num[i][j]
表示该数字从第i位到第j位截取出的数字。
将输入的数字m进行数字拆分,存在数组a中。双重循环,双指针倒序遍历a数组,i指向最高位,j指向最低位,用数字正向组合的写法,将这些位数字组合起来,求出第i到第j位的数字。
也可以将数字输入为字符串,通过取子串转为整数的方法,构建num数组。
2. 状态定义
集合:在数字中插入乘号的方案
限制:看前几位数字,使用几个乘号
属性:乘积
条件:最大
统计量:乘积
状态定义:dp[i][j]
:在前i位数字中插入j个乘号能得到的最大乘积。
初始状态:dp[i][0]
:前i位数字中插入0个乘号,乘积就是这i位数字。dp[i][0] = num[1][i]
3. 状态转移方程
集合:在前i位数字中插入j个乘号的方案
分割集合:根据第j个乘号插入位置的不同情况分割集合
因为第j个乘号前面还有j-1个乘号,最密集插入乘号,每两个乘号间有1位数字,第j-1个乘号会在第j-1位数字的后面。第j个乘号可能的最靠前的位置,为第j位数字的后面。
第j个乘号可以取到的最靠后的位置,为第i-1位数字的后面。
假设第j个乘号在第h位数字的后面,那么第j乘号后面的数字,为第h+1位到第i位组成的数字。
h从j遍历到i-1,先求出前h位数字中插入j-1个乘号能得到的最大乘积(dp[h][j-1]
),再乘以第h+1位到第i位组成的数字(num[h+1][i]
),得到前i位数字插入j个乘号的最大乘积:dp[i][j] = dp[h][j-1]*num[h+1][i]
。对所有可能的情况取最大值。
本题将一段数字分为前半段(前h位数字插入j-1个乘号)与后半段(数字num[h+1][i]
),类似于区间动规中遍历断点,将一个大区间拆分为小区间的思想。
【题解代码】
解法1:区间动规
- 写法1:先数位分离,而后数字组合构造num数组
#include<bits/stdc++.h>
using namespace std;
#define N 20
long long dp[N][N], num[N][N], m;//dp[i][j]:在前i位数字中插入j个乘号能得到的最大乘积。
int n, k;
void initNum()
{
int a[N] = {}, ai = n;
for(long long i = m; i > 0; i /= 10)//注意,这里可能保存m的数字都要设为long long
a[ai--] = i%10;//a:从低位到高位存储m的各个数位
for(int i = 1; i <= n; ++i)
for(int j = i; j <= n; ++j)
num[i][j] = num[i][j-1]*10+a[j];//num[i][j]:表示数字m截取第i位到第j位得到的数字
}
int main()
{
cin >> n >> k >> m;//m为数字串
initNum();//初始化num数组
for(int i = 1; i <= n; ++i)//初始状态
dp[i][0] = num[1][i];//前i位数字中插入0个乘号,乘积就是这i位数字
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= k; ++j)
for(int h = j-1; h < i; ++h)
dp[i][j] = max(dp[i][j], dp[h][j-1]*num[h+1][i]);
cout << dp[n][k];
return 0;
}
- 写法2:取子串转为整数,构造num数组
#include<bits/stdc++.h>
using namespace std;
#define N 20
long long dp[N][N], num[N][N];//dp[i][j]:在前i位数字中插入j个乘号能得到的最大乘积。
string s;
int n, k;
void initNum()
{
for(int len = 1; len <= s.length(); ++len)
for(int i = 1; i+len-1 <= s.length(); ++i)
{
int j = i+len-1;
num[i][j] = stoll(s.substr(i-1, len));//num[i][j]:数字第i位~第j位形成数字的数值
}
}
int main()
{
cin >> n >> k >> s;//s为数字串
initNum();//初始化num数组
for(int i = 1; i <= n; ++i)//初始状态
dp[i][0] = num[1][i];//前i位数字中插入0个乘号,乘积就是这i位数字
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= k; ++j)
for(int h = j; h <= i; ++h)//在h-1与h之间插入最后一个乘号
dp[i][j] = max(dp[i][j], dp[h-1][j-1]*num[h][i]);
cout << dp[n][k];
return 0;
}