文本转图片自动生成(Text-to-Image)历史最全模型、数据集、经典论文整理分享

https://github.com/Yutong-Zhou-cv/Awesome-Text-to-Image在过去的几十年里,计算机视觉和自然语言处理领域在深度学习研究中取得了几项重大技术突破。最近,研究人员似乎对在这些传统上独立的领域中结合语义信息和视觉信息感兴趣。Text-to-Image将输入文本描述(关键词或句子)转换成真实图像的文本到图像合成技术进行了大量研究,本资源整理了文本转图片自动生成(Text-to-Image)历史最全模型、数据集、经典论文等资源。

资源整理自网络,源地址:https://github.com/wangyuGithub01/Machine_Learning_Resources

目录

内容截图

往期精品内容推荐

《Hands-On Machine Learning with Scikit-Learn》 中英文版及AI必读10本经典

投了3遍都被毙的论文,终于中了

算法学的这么差,试用期你都过不了!

想跳槽的,机会来了!2022年薪百万赛道!

麻省理工学院2021最新-《深度学习导论》课程视频及ppt分享

李宏毅-2022再探寶可夢、數碼寶貝分類器-淺談機器學習原理

2020年8月新书-《图神经网络表示学习技术综述》免费pdf分享

一文告诉你Adam、AdamW、Amsgrad区别和联系,助你实现Super-convergence的终极目标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值