Description
农夫约翰的奶牛住在N (2 <= N <= 200,000)片不同的草地上,标号为1到N。恰好有N-1条单位长度的双向道路,用各种各样的方法连接这些草地。而且从每片草地出发都可以抵达其他所有草地。也就是说,这些草地和道路构成了一种叫做树的图。输入包含一个详细的草地的集合,详细说明了每个草地的父节点P_i (0 <= P_i <= N)。根节点的P_i == 0, 表示它没有父节点。因为奶牛建立了1到K一共K (1 <= K <= N/2)个政党。每只奶牛都要加入某一个政党,其中, 第i只奶牛属于第A_i (1 <= A_i <= K)个政党。而且每个政党至少有两只奶牛。 这些政党互相吵闹争。每个政党都想知道自己的“范围”有多大。其中,定义一个政党的范围是这个政党离得最远的两只奶牛(沿着双向道路行走)的距离。 比如说,记为政党1包含奶牛1,3和6,政党2包含奶牛2,4和5。这些草地的连接方式如下图所 示(政党1由-n-表示):
政党1最大的两只奶牛的距离是3(也就是奶牛3和奶牛6的距离)。政党2最大的两只奶牛的距离是2(也就是奶牛2和4,4和5,还有5和2之间的距离)。 帮助奶牛们求出每个政党的范围。
Input
* 第一行: 两个由空格隔开的整数: N 和 K * 第2到第N+1行: 第i+1行包含两个由空格隔开的整数: A_i和P_i
Output
* 第1到第K行: 第i行包含一个单独的整数,表示第i个政党的范围。
Sample Input
6 2
1 3
2 1
1 0
2 1
2 1
1 5
1 3
2 1
1 0
2 1
2 1
1 5
Sample Output
3
2
2
首先我们求出每个政党深度最深的节点,然后用这个节点求出和该政党节点的最大值即为答案。
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
struct line
{
int s,t;
int next;
}a[1000001];
int head[500001];
int edge;
inline void add(int s,int t)
{
a[edge].next=head[s];
head[s]=edge;
a[edge].s=s;
a[edge].t=t;
}
inline int abs(int x)
{
if(x<0)
x=-x;
return x;
}
bool v[500001];
int deep[500001];
int ans[500001][22];
inline void bfs(int r)
{
int i,j;
deep[r]=1;
for(i=0;i<=21;i++)
ans[r][i]=r;
queue <int>Q;
while(!Q.empty())
Q.pop();
Q.push(r);
v[r]=true;
while(!Q.empty())
{
int d=Q.front();
Q.pop();
for(i=head[d];i!=0;i=a[i].next)
{
int t=a[i].t;
if(!v[t])
{
v[t]=true;
Q.push(t);
deep[t]=deep[d]+1;
ans[t][0]=d;
int dt;
for(j=1;j<=21;j++)
{
dt=ans[t][j-1];
ans[t][j]=ans[dt][j-1];
}
}
}
}
}
inline int swim(int x,int y)
{
while(deep[x]!=deep[y])
{
int i=0;
while(deep[ans[y][i]]>deep[x])
i++;
if(i!=0)
i--;
y=ans[y][i];
}
return y;
}
inline int lca(int x,int y)
{
if(deep[x]>deep[y])
{
int t=x;
x=y;
y=t;
}
y=swim(x,y);
while(x!=y)
{
int i=0;
while(ans[x][i]!=ans[y][i])
i++;
if(i!=0)
i--;
x=ans[x][i];
y=ans[y][i];
}
return x;
}
int g[200001];
int dis[200001];
int as[200001];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int i;
int t,root;
for(i=1;i<=n;i++)
{
scanf("%d%d",&g[i],&t);
if(t!=0)
{
edge++;
add(t,i);
}
else
root=i;
}
memset(v,false,sizeof(v));
bfs(root);
for(i=1;i<=n;i++)
if(deep[i]>deep[dis[g[i]]])
dis[g[i]]=i;
int fa;
for(i=1;i<=n;i++)
{
fa=lca(i,dis[g[i]]);
as[g[i]]=max(as[g[i]],deep[i]+deep[dis[g[i]]]-deep[fa]*2);
}
for(i=1;i<=k;i++)
printf("%d\n",as[i]);
return 0;
}