bzoj 2442: [Usaco2011 Open]修剪草坪

Description


在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。

然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。

靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。

Input


* 第一行:空格隔开的两个整数N和K

* 第二到N+1行:第i+1行有一个整数E_i


Output


* 第一行:一个值,表示FJ可以得到的最大的效率值。

Sample Input

5 2
1
2
3
4
5

输入解释:

FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛

Sample Output


12

FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。


f[i]表示取到i最小的消耗。单调队列优化

#include<cstdio>
#include<algorithm>
using namespace std;
long long a[100001];
long long s[100001];
long long f[100001];
struct que
{
     int i;
     long long x;
}q[1000001];
int main()
{
     int n,k;
     scanf("%d%d",&n,&k);
     int i;
     for(i=1;i<=n;i++)
     {
          scanf("%lld",&a[i]);
          s[i]=s[i-1]+a[i];
     }
     int l,r;
     l=0;
     r=0;
     for(i=1;i<=n;i++)
     {
          f[i]=q[l].x+a[i];
          while(f[i]<q[r].x&&l<=r)
               r--;
          r++;
          q[r].i=i;
          q[r].x=f[i];
          while(q[l].i<i-k)
               l++;
     }
     long long ans=(long long)10000000*(long long)10000000;
     int st=n-k;
     if(st<0)
          st=0;
     for(i=st;i<=n;i++)
          ans=min(ans,f[i]);
     printf("%lld\n",s[n]-ans);
     return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值