Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
5 2
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
12
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
f[i]表示取到i最小的消耗。单调队列优化
#include<cstdio>
#include<algorithm>
using namespace std;
long long a[100001];
long long s[100001];
long long f[100001];
struct que
{
int i;
long long x;
}q[1000001];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int i;
for(i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
s[i]=s[i-1]+a[i];
}
int l,r;
l=0;
r=0;
for(i=1;i<=n;i++)
{
f[i]=q[l].x+a[i];
while(f[i]<q[r].x&&l<=r)
r--;
r++;
q[r].i=i;
q[r].x=f[i];
while(q[l].i<i-k)
l++;
}
long long ans=(long long)10000000*(long long)10000000;
int st=n-k;
if(st<0)
st=0;
for(i=st;i<=n;i++)
ans=min(ans,f[i]);
printf("%lld\n",s[n]-ans);
return 0;
}